Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Friction properties of suspended graphene

Li Liang-Liang Meng Fan-Wei Zou Kun Huang Yao Peng Yi-Tian

Citation:

Friction properties of suspended graphene

Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian
PDF
HTML
Get Citation
  • Minimizing friction is a goal that has long been pursued in history. The role of micro-electromechanical system and nano-electromechanical system (MEMS/NEMS) in electronic devices is becoming more and more important. Due to the increasingly small size of the device, large surface-to-volume ratio leads to severe friction and wear problems of the device, thus limiting its performance. Graphene is considered as a good lubricating material in MEMS/NEMS due to its extremely thin size and excellent anti-friction effect. The study of nano-friction properties of graphene is of great significance in further developing the MEMS/NEMS. In this work, microporous arrays are prepared on a SiO2/Si substrate, and graphene is stripped on the micropores to form a suspension structure. The friction properties of suspended graphene and supported graphene are measured by using atomic force microscope. The results show that the nanofriction on suspended graphene is significantly reduced compared with that on supported graphene. The supported graphene experiences a frictional enhancement effect because of the puckering effect, while the friction enhancing effect disappears in the suspended graphene. With the increase of graphene thickness, the out-of-plane stiffness increases gradually, and the friction difference between suspended graphene and supported graphene decreases gradually. In addition, the nanofriction properties of suspended graphene under new tip and pretreated tip are also different. The friction between the pretreated tip and graphene is significantly higher than that between the new tip and graphene. The surface friction difference between the suspended graphene and the supported graphene decreases when the pretreated tip is used compared with the new tip. This work demonstrates that the deformability of atomic-scale structures can provide an additional channel of regulating the friction of contact interfaces. By comparing the changes of surface friction between the suspended graphene and the supported graphene with different thickness and tip sizes, the influence of out-of-surface deformation on the friction of graphene is revealed, thus providing theoretical guidance for effectively improving the friction performance of graphene solid lubricant.
      Corresponding author: Zou Kun, kouz@dhu.edu.cn
    [1]

    Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3−10

    [2]

    Kim H J, Kim D E 2009 Int. J. Precis. Eng. Manuf. 10 141

    [3]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [4]

    Filleter T, Mcchesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102Google Scholar

    [5]

    Zeng X Z, Peng Y T, Lang H J 2017 Carbon 118 233Google Scholar

    [6]

    Zhang H W, Guo Z R, Gao H, Chang T 2015 Carbon 94 60Google Scholar

    [7]

    Elinski M B, Liu Z T, Spear J C, Batteas J D 2017 J. Phys. D: Appl. Phys. 50 103003Google Scholar

    [8]

    Frank I W, Tanenbaum D M 2007 J. Vac. Sci. Technol., B 25 2558Google Scholar

    [9]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2007 Solid State Commun. 146 351

    [11]

    Hu K M, Xue Z Y, Liu Y Q, Long H, Peng B, Yan H, Di Z F, Wang X, Lin L W, Zhang W M 2019 Small 15 1804337Google Scholar

    [12]

    Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X Q, Li Q Y 2019 Proc. Natl. Acad. Sci. U. S. A 116 24452Google Scholar

    [13]

    Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar

    [14]

    Ye Z, Martini A 2014 Langmuir 30 14707Google Scholar

    [15]

    Bunch J S, Van Der Zande A M, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [16]

    Xu K, Wang K, Zhao W, Bao W Z, Liu E, Ren Y F, Wang Miao, Fu Y J, Zeng J W, Li Z G, Zhou W, Song F Q, Wang X R, Shi Y, Wan X G, Fuhrer M S, Wang B G, Qiao Z H, Miao F, Xing D Y 2015 Nat. Commun. 6 8119Google Scholar

    [17]

    Medyanik S N, Liu W K, Sung I H, Robert W 2006 Phys. Rev. Lett. 97 136106Google Scholar

    [18]

    钱林茂, 田煜, 温诗铸 2013 纳米摩擦学 (北京: 科学出版社) 第168−173页

    Qian L M, Tian Y, Wen S T 2013 Nanotribology (Beijing: Science Press) pp168−173 (in Chinese)

    [19]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [20]

    Popov V L, Gray J A T 2012 Z. Angew. Math. Mech. 92 683Google Scholar

    [21]

    张涛, 王慧, 胡元中 2001 摩擦学学报 05 396Google Scholar

    Zhang T, Wang H, Hu Y Z 2001 Tribology 05 396Google Scholar

    [22]

    Fang L, Liu D M, Guo Y, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

  • 图 1  石墨烯的AFM形貌图和高度图

    Figure 1.  AFM topographic image with height of graphene.

    图 2  (a) 悬浮石墨烯形貌图, 中心白框为悬浮石墨烯测试区域, 黑框为支撑石墨烯测试区域; (b) 悬浮与支撑区域摩擦力-载荷关系; (c) 支撑石墨烯侧向力曲线(150 nN载荷); (d) 悬浮石墨烯侧向力曲线(150 nN载荷)

    Figure 2.  (a) Topography of suspended graphene, the white box is the test area for suspended graphene, the white box is the test area for supported graphene; (b) friction versus load data measured on the suspended graphene and supported graphene; (c) lateral force curves (load of 150 nN) measured on supported graphene and (d) suspended graphene.

    图 3  (a) 不同厚度支撑与悬浮石墨烯的摩擦力-载荷曲线; (b) 不同厚度支撑与悬浮石墨烯的摩擦力(100 nN载荷); (c) 不同厚度支撑与悬浮石墨烯法向力-位移曲线; (d) 支撑状态下厚层石墨烯(68 nm)侧向力曲线(150 nN载荷)

    Figure 3.  (a) Friction versus load data measured on the suspended graphene and supported graphene of different thickness; (b) the friction of supported and suspended graphene of different thickness (load of 100 nN); (c) force-distance curves measured on suspended and supported graphene of different thickness; (d) lateral force curves (load of 150 nN) measured on supported thick grapheme (68 nm).

    图 4  石墨烯在支撑状态下(a)和悬浮状态下(b)与探针的摩擦状态示意图

    Figure 4.  Schematic diagram of the friction process between the tip and graphene under (a) supported and (b) suspended states.

    图 5  (a)新探针和(b)预磨损探针针尖的扫描电子显微镜图像

    Figure 5.  AFM tip (a) without and (b) with pre-wearing process before measurements obtained by scanning electron microscope (SEM).

    图 6  (a) 新针尖和预磨损针尖分别与悬浮石墨烯与支撑石墨烯的力-位移曲线; (b) 新针尖和预磨损针尖分别与悬浮石墨烯与支撑石墨烯间的摩擦力-载荷关系; (c) 新针尖和(d) 预磨损针尖测量的支撑石墨烯侧向力曲线(150 nN载荷)

    Figure 6.  (a) Force-distance curves measured on suspended and supported graphene under new tip and pretreated tip; (b) friction-load image of the new probe tip and pretreated tip on the supported graphene and suspended graphene; (c) and (d) lateral force curves measured on supported graphene measured by different tips (load of 150 nN).

    表 1  实验所用的试剂信息

    Table 1.  The reagent information used in the experiment.

    序号名称型号/规格生产公司
    1光刻胶AZ5214苏州锐材半导体有限公司
    2显影剂NMD-
    3/2.38%
    长春应化(常熟)有限公司
    3氟化铵(NH4F)优级纯国药化试
    4氢氟酸(HF)化学纯国药化试
    5乙醇分析纯国药化试
    6丙酮分析纯国药化试
    7异丙醇分析纯国药化试
    DownLoad: CSV
  • [1]

    Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3−10

    [2]

    Kim H J, Kim D E 2009 Int. J. Precis. Eng. Manuf. 10 141

    [3]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [4]

    Filleter T, Mcchesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102Google Scholar

    [5]

    Zeng X Z, Peng Y T, Lang H J 2017 Carbon 118 233Google Scholar

    [6]

    Zhang H W, Guo Z R, Gao H, Chang T 2015 Carbon 94 60Google Scholar

    [7]

    Elinski M B, Liu Z T, Spear J C, Batteas J D 2017 J. Phys. D: Appl. Phys. 50 103003Google Scholar

    [8]

    Frank I W, Tanenbaum D M 2007 J. Vac. Sci. Technol., B 25 2558Google Scholar

    [9]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2007 Solid State Commun. 146 351

    [11]

    Hu K M, Xue Z Y, Liu Y Q, Long H, Peng B, Yan H, Di Z F, Wang X, Lin L W, Zhang W M 2019 Small 15 1804337Google Scholar

    [12]

    Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X Q, Li Q Y 2019 Proc. Natl. Acad. Sci. U. S. A 116 24452Google Scholar

    [13]

    Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar

    [14]

    Ye Z, Martini A 2014 Langmuir 30 14707Google Scholar

    [15]

    Bunch J S, Van Der Zande A M, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [16]

    Xu K, Wang K, Zhao W, Bao W Z, Liu E, Ren Y F, Wang Miao, Fu Y J, Zeng J W, Li Z G, Zhou W, Song F Q, Wang X R, Shi Y, Wan X G, Fuhrer M S, Wang B G, Qiao Z H, Miao F, Xing D Y 2015 Nat. Commun. 6 8119Google Scholar

    [17]

    Medyanik S N, Liu W K, Sung I H, Robert W 2006 Phys. Rev. Lett. 97 136106Google Scholar

    [18]

    钱林茂, 田煜, 温诗铸 2013 纳米摩擦学 (北京: 科学出版社) 第168−173页

    Qian L M, Tian Y, Wen S T 2013 Nanotribology (Beijing: Science Press) pp168−173 (in Chinese)

    [19]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [20]

    Popov V L, Gray J A T 2012 Z. Angew. Math. Mech. 92 683Google Scholar

    [21]

    张涛, 王慧, 胡元中 2001 摩擦学学报 05 396Google Scholar

    Zhang T, Wang H, Hu Y Z 2001 Tribology 05 396Google Scholar

    [22]

    Fang L, Liu D M, Guo Y, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

  • [1] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [2] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [4] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [5] Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [6] Chen Xing-Yuan, Huang Yao, Peng Yi-Tian. Tribological properties of suspended hexagonal boron nitride under electric field. Acta Physica Sinica, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [7] Deng Jian-Feng, Li Hui-Qin, Yu Fan, Liang Qi. Adhesion and nanotribological properties of folded graphene prepared by mechanical exfoliation. Acta Physica Sinica, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [8] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [9] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [11] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] Jiang Guo-Ping, Hao Hong, Zeng Chun-Hang, Hao Yi-Fei, Wu Ru-Jun, Liu Ji-Chao. Experimental study of friction effect under impact loading. Acta Physica Sinica, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [13] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [14] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Interfacial friction calculation based on the coupled-oscillator model. Acta Physica Sinica, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [15] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] Hu Lin, Yang Ping, Xu Ting, Jiang Yang, Xu Hai-Jiang, Long Wei, Yang Chang-Shun, Zhang Tao, Lu Kun-Quan. The static friction force on a rod immersed in granular matter. Acta Physica Sinica, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
Metrics
  • Abstract views:  5787
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2020
  • Accepted Date:  09 December 2020
  • Available Online:  08 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回