Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy

Zhou Hao-Tian Gao Xiang Zheng Peng Qin Meng Cao Yi Wang Wei

Citation:

Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy

Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Elastomeric proteins are a special class of proteins with unique mechanical functions. They bear, transduce mechanical forces inside cell, and serve as biomaterials of high elasticities and strengths outside cell. Depending on their functions, the mechanical properties of elastomeric proteins are very diverse. Some of them are of high mechanical stability and the others are of high extensibility and toughness. Although many elastomeric proteins are engineered for the applications in the fields of biomaterials and nanotechnology, the molecular determinant of the mechanical stability remains elusive. In this review, we summarize recent advances in the field of protein mechanics studied by using single molecule force spectroscopy. Force spectroscopy enables people to probe the unfolding properties of protein domains, thus paving the way for building special proteins with characteristic mechanical functions. To begin with, it is necessary to clarify the factors and their relations with the unfolding force, which is deduced based on Bell's expression. It turns out that the unfolding force is proportional to pulling speed when the speed is relatively small, and has a logarithmic relation in the high-speed approximation. After the external determinant of the force probe is clarified, some intrinsic factors are to be discussed. Hydrogen bound and electrostatic force, rather than covalent bond, contribute to the mechanical performances of proteins. Those interactions rely on the topology structures of protein molecules. By changing the structures of proteins, researchers now manage to change the mechanical characteristics of certain proteins. Since single protein is unable to be detected by traditional optic microscope, three devices used to observe and manipulate single protein are introduced in the present paper. These include atomic force microscopy, magnetic tweezers and optical tweezers. Among them, a more detailed explanation of atomic force microscope (AFM) is provided, which briefly describes the basic mechanism and structure of AFM and possible explanation for the formation of force-extension curves. After that, several recent advances for improving the AFM based single molecule force spectroscopy techniques are highlighted. For example, Tom Perkins group [Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131] has discovered that the gold-stripped tip gives more accurate and reproducible results than a gold-coated one. Matthias Rief group [Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989] has managed to increase the resolution of AFM, pushing it in pair with optical tweezers. Hermann Gaub et al. [Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127] combined the microfluidic chip and DNA expression in vitro to increase the yields of interpretable single-molecule interaction traces. Toshio Ando et al. [Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337] have developed methods to increase the imaging speed of AFM. Finally, the rationally designing the mechanical properties of protein-based materials pioneered by Hongbin Li group is highlighted. They have discovered direct relationship between the mechanical properties of individual proteins and those of the protein materials. To sum up, with AFM, scientists now can explore mechanical properties of a wide range of proteins, which enables them to build biomaterials with exceptional mechanical features.
      Corresponding author: Qin Meng, qinmeng@nju.edu.cn;caoyi@nju.edu.cn ; Cao Yi, qinmeng@nju.edu.cn;caoyi@nju.edu.cn
    • Funds: Project supported by Six Talent Peaks Project in Jiangsu Province China and the National Natural Science Foundation of China (Grant Nos. 21522402, 11374148, 11334004, 81121062).
    [1]

    Strong M 2004 PLoS Biol. 2 305

    [2]

    Berkemeier F, Bertz M, Xiao S, Pinotsis N, Wilmanns M, Grater F, Rief M 2011 Proc. Natl. Acad. Sci. USA 108 14139

    [3]

    Bullard B, Garcia T, Benes V, Leake M C, Linke W A, Oberhauser A F 2006 Proc. Natl. Acad. Sci. USA 103 4451

    [4]

    Scharnagl C, Reif M, Friedrich J 2005 Biochim. Biophys. Acta 1749 187

    [5]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [6]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [7]

    Oberhauser A F, Marszalek P E, Erickson H P, Fernandez J M 1998 Nature 393 181

    [8]

    Rief M, Gautel M, Schemmel A, Gaub H E 1998 Biophys. J. 75 3008

    [9]

    Rief M, Pascual J, Saraste M, Gaub H E 1999 J. Mol. Biol. 286 553

    [10]

    Rief M, Gautel M, Gaub H E 2000 Adv. Exp. Med. Biol. 481 129

    [11]

    Schwaiger I, Sattler C, Hostetter D R, Rief M 2002 Nat. Mater. 1 232

    [12]

    Urry D W, Parker T M 2002 J. Muscle Res. Cell Motil. 23 543

    [13]

    Guerette P A, Ginzinger D G, Weber B H, Gosline J M 1996 Science 272 112

    [14]

    Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K 1999 Nature 399 761

    [15]

    Ardell D H, Andersen S O 2001 Insect Biochem. Mol. Biol. 31 965

    [16]

    Becker N, Oroudjev E, Mutz S, Cleveland J P, Hansma P K, Hayashi C Y, Makarov D E, Hansma H G 2003 Nat. Mater. 2 278

    [17]

    Elvin C M, Carr A G, Huson M G, Maxwell J M, Pearson R D, Vuocolo T, Liyou N E, Wong D C, Merritt D J, Dixon N E 2005 Nature 437 999

    [18]

    Lyons R E, Lesieur E, Kim M, Wong D C, Huson M G, Nairn K M, Brownlee A G, Pearson R D, Elvin C M 2007 Protein Eng. Des. Sel. 20 25

    [19]

    Heim M, Keerl D, Scheibel T 2009 Angew. Chem. Int. Ed. Engl. 48 3584

    [20]

    Wong J Y, McDonald J, Taylor-Pinney M, Spivak D I, Kaplan D L, Buehler M J 2012 Nano Today 7 488

    [21]

    Li H 2007 Org. Biomol. Chem. 5 3399

    [22]

    Li H 2008 Adv. Funct. Mater. 18 2643

    [23]

    Li H, Cao Y 2010 Acc. Chem. Res. 43 1331

    [24]

    Hoffmann T, Tych K M, Hughes M L, Brockwell D J, Dougan L 2013 Phys. Chem. Chem. Phys. 15 15767

    [25]

    Bell G I 1978 Science 200 618

    [26]

    Evans E, Ritchie K 1997 Biophys. J. 72 1541

    [27]

    Evans E, Ritchie K 1999 Biophys. J. 76 2439

    [28]

    Best R B, Li B, Steward A, Daggett V, Clarke J 2001 Biophys. J. 81 2344

    [29]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. Engl. 45 642

    [30]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [31]

    Brockwell D J, Beddard G S, Paci E, West D K, Olmsted P D, Smith D A, Radford S E 2005 Biophys. J. 89 506

    [32]

    Dietz H, Rief M 2004 Proc. Natl. Acad. Sci. USA 101 16192

    [33]

    Cao Y, Li H 2008 Nat. Nanotechnol. 3 512

    [34]

    Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li H 2007 Proc. Natl. Acad. Sci. USA 104 9278

    [35]

    Balamurali M M, Sharma D, Chang A, Khor D, Chu R, Li H 2008 Protein Sci. 17 1815

    [36]

    Ng S P, Billings K S, Ohashi T, Allen M D, Best R B, Randles L G, Erickson H P, Clarke J 2007 Proc. Natl. Acad. Sci. USA 104 9633

    [37]

    Perez-Jimenez R, Garcia-Manyes S, Ainavarapu S R, Fernandez J M 2006 J. Biol. Chem. 281 40010

    [38]

    Peng Q, Li H 2008 Proc. Natl. Acad. Sci. USA 105 1885

    [39]

    Aggarwal V, Kulothungan S R, Balamurali M M, Saranya S R, Varadarajan R, Ainavarapu S R 2011 J. Biol. Chem. 286 28056

    [40]

    Puchner E M, Alexandrovich A, Kho A L, Hensen U, Schafer L V, Brandmeier B, Grater F, Grubmuller H, Gaub H E, Gautel M 2008 Proc. Natl. Acad. Sci. USA 105 13385

    [41]

    Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner R A, Gautel M 2010 Proc. Natl. Acad. Sci. USA 107 2908

    [42]

    Cao Y, Yoo T, Li H 2008 Proc. Natl. Acad. Sci. USA 105 11152

    [43]

    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E 1999 Science 283 1727

    [44]

    Cao Y, Balamurali M M, Sharma D, Li H 2007 Proc. Natl. Acad. Sci. USA 104 15677

    [45]

    Cao Y, Li H 2008 J. Mol. Biol. 375 316

    [46]

    Brockwell D J, Paci E, Zinober R C, Beddard G S, Olmsted P D, Smith D A, Perham R N, Radford S E 2003 Nat. Struct. Biol. 10 731

    [47]

    Carrion-Vazquez M, Li H, Lu H, Marszalek P E, Oberhauser A F, Fernandez J M 2003 Nat. Struct. Biol. 10 738

    [48]

    Dietz H, Berkemeier F, Bertz M, Rief M 2006 Proc. Natl. Acad. Sci. USA 103 12724

    [49]

    Hinterdorfer P, Dufrene Y F 2006 Nat. Methods 3 347

    [50]

    Muller D J, Dufrene Y F 2008 Nat. Nanotechnol. 3 261

    [51]

    Hoffman T, Dougan L 2012 Chem. Soc. Rev. 41 4773

    [52]

    Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131

    [53]

    Junker J P, Ziegler F, Rief M 2009 Science 323 633

    [54]

    Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989

    [55]

    Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127

    [56]

    Baumann F, Heucke S F, Pippig D A, Gaub H E 2015 Rev. Sci. Instrum. 86 035109

    [57]

    Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337

    [58]

    Lee H, Scherer N F, Messersmith P B 2006 Proc. Natl. Acad. Sci. USA 103 12999

    [59]

    Li Y, Qin M, Li Y, Cao Y, Wang W 2014 Langmuir 30 4358

  • [1]

    Strong M 2004 PLoS Biol. 2 305

    [2]

    Berkemeier F, Bertz M, Xiao S, Pinotsis N, Wilmanns M, Grater F, Rief M 2011 Proc. Natl. Acad. Sci. USA 108 14139

    [3]

    Bullard B, Garcia T, Benes V, Leake M C, Linke W A, Oberhauser A F 2006 Proc. Natl. Acad. Sci. USA 103 4451

    [4]

    Scharnagl C, Reif M, Friedrich J 2005 Biochim. Biophys. Acta 1749 187

    [5]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [6]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [7]

    Oberhauser A F, Marszalek P E, Erickson H P, Fernandez J M 1998 Nature 393 181

    [8]

    Rief M, Gautel M, Schemmel A, Gaub H E 1998 Biophys. J. 75 3008

    [9]

    Rief M, Pascual J, Saraste M, Gaub H E 1999 J. Mol. Biol. 286 553

    [10]

    Rief M, Gautel M, Gaub H E 2000 Adv. Exp. Med. Biol. 481 129

    [11]

    Schwaiger I, Sattler C, Hostetter D R, Rief M 2002 Nat. Mater. 1 232

    [12]

    Urry D W, Parker T M 2002 J. Muscle Res. Cell Motil. 23 543

    [13]

    Guerette P A, Ginzinger D G, Weber B H, Gosline J M 1996 Science 272 112

    [14]

    Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K 1999 Nature 399 761

    [15]

    Ardell D H, Andersen S O 2001 Insect Biochem. Mol. Biol. 31 965

    [16]

    Becker N, Oroudjev E, Mutz S, Cleveland J P, Hansma P K, Hayashi C Y, Makarov D E, Hansma H G 2003 Nat. Mater. 2 278

    [17]

    Elvin C M, Carr A G, Huson M G, Maxwell J M, Pearson R D, Vuocolo T, Liyou N E, Wong D C, Merritt D J, Dixon N E 2005 Nature 437 999

    [18]

    Lyons R E, Lesieur E, Kim M, Wong D C, Huson M G, Nairn K M, Brownlee A G, Pearson R D, Elvin C M 2007 Protein Eng. Des. Sel. 20 25

    [19]

    Heim M, Keerl D, Scheibel T 2009 Angew. Chem. Int. Ed. Engl. 48 3584

    [20]

    Wong J Y, McDonald J, Taylor-Pinney M, Spivak D I, Kaplan D L, Buehler M J 2012 Nano Today 7 488

    [21]

    Li H 2007 Org. Biomol. Chem. 5 3399

    [22]

    Li H 2008 Adv. Funct. Mater. 18 2643

    [23]

    Li H, Cao Y 2010 Acc. Chem. Res. 43 1331

    [24]

    Hoffmann T, Tych K M, Hughes M L, Brockwell D J, Dougan L 2013 Phys. Chem. Chem. Phys. 15 15767

    [25]

    Bell G I 1978 Science 200 618

    [26]

    Evans E, Ritchie K 1997 Biophys. J. 72 1541

    [27]

    Evans E, Ritchie K 1999 Biophys. J. 76 2439

    [28]

    Best R B, Li B, Steward A, Daggett V, Clarke J 2001 Biophys. J. 81 2344

    [29]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. Engl. 45 642

    [30]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [31]

    Brockwell D J, Beddard G S, Paci E, West D K, Olmsted P D, Smith D A, Radford S E 2005 Biophys. J. 89 506

    [32]

    Dietz H, Rief M 2004 Proc. Natl. Acad. Sci. USA 101 16192

    [33]

    Cao Y, Li H 2008 Nat. Nanotechnol. 3 512

    [34]

    Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li H 2007 Proc. Natl. Acad. Sci. USA 104 9278

    [35]

    Balamurali M M, Sharma D, Chang A, Khor D, Chu R, Li H 2008 Protein Sci. 17 1815

    [36]

    Ng S P, Billings K S, Ohashi T, Allen M D, Best R B, Randles L G, Erickson H P, Clarke J 2007 Proc. Natl. Acad. Sci. USA 104 9633

    [37]

    Perez-Jimenez R, Garcia-Manyes S, Ainavarapu S R, Fernandez J M 2006 J. Biol. Chem. 281 40010

    [38]

    Peng Q, Li H 2008 Proc. Natl. Acad. Sci. USA 105 1885

    [39]

    Aggarwal V, Kulothungan S R, Balamurali M M, Saranya S R, Varadarajan R, Ainavarapu S R 2011 J. Biol. Chem. 286 28056

    [40]

    Puchner E M, Alexandrovich A, Kho A L, Hensen U, Schafer L V, Brandmeier B, Grater F, Grubmuller H, Gaub H E, Gautel M 2008 Proc. Natl. Acad. Sci. USA 105 13385

    [41]

    Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner R A, Gautel M 2010 Proc. Natl. Acad. Sci. USA 107 2908

    [42]

    Cao Y, Yoo T, Li H 2008 Proc. Natl. Acad. Sci. USA 105 11152

    [43]

    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E 1999 Science 283 1727

    [44]

    Cao Y, Balamurali M M, Sharma D, Li H 2007 Proc. Natl. Acad. Sci. USA 104 15677

    [45]

    Cao Y, Li H 2008 J. Mol. Biol. 375 316

    [46]

    Brockwell D J, Paci E, Zinober R C, Beddard G S, Olmsted P D, Smith D A, Perham R N, Radford S E 2003 Nat. Struct. Biol. 10 731

    [47]

    Carrion-Vazquez M, Li H, Lu H, Marszalek P E, Oberhauser A F, Fernandez J M 2003 Nat. Struct. Biol. 10 738

    [48]

    Dietz H, Berkemeier F, Bertz M, Rief M 2006 Proc. Natl. Acad. Sci. USA 103 12724

    [49]

    Hinterdorfer P, Dufrene Y F 2006 Nat. Methods 3 347

    [50]

    Muller D J, Dufrene Y F 2008 Nat. Nanotechnol. 3 261

    [51]

    Hoffman T, Dougan L 2012 Chem. Soc. Rev. 41 4773

    [52]

    Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131

    [53]

    Junker J P, Ziegler F, Rief M 2009 Science 323 633

    [54]

    Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989

    [55]

    Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127

    [56]

    Baumann F, Heucke S F, Pippig D A, Gaub H E 2015 Rev. Sci. Instrum. 86 035109

    [57]

    Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337

    [58]

    Lee H, Scherer N F, Messersmith P B 2006 Proc. Natl. Acad. Sci. USA 103 12999

    [59]

    Li Y, Qin M, Li Y, Cao Y, Wang W 2014 Langmuir 30 4358

  • [1] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [3] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [4] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [5] Li Peng-Fei, Cao Yi, Qin Meng, Wang Wei. Single molecule force spectroscopy study of calcium regulated mechanical unfolding of the A6 domain of adseverin. Acta Physica Sinica, 2017, 66(19): 196201. doi: 10.7498/aps.66.196201
    [6] Deng Hai-You, Jia Ya, Zhang Yang. Protein structure prediction. Acta Physica Sinica, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [7] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [8] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [9] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [10] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [11] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [12] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Investigation of n-type GaN deposited on sapphire substrate with different small misorientations. Acta Physica Sinica, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [13] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Improving the quantum well properties with n-type InGaN/GaN superlattices layer. Acta Physica Sinica, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [14] Enhanced luminescence of InGaN/GaN multiple quantum wells with indium doped GaN barriers. Acta Physica Sinica, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [15] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
    [20] YAN XUN-LING, DONG RUI-XIN, WANG BO-YUN, HU HAI-QUAN, XU BING-ZHEN. SELECTIVE RULES FOR THE RAMAN SPECTRUM OF α-HELICAL PROTEIN MOLECULES. Acta Physica Sinica, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
Metrics
  • Abstract views:  7912
  • PDF Downloads:  336
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2016
  • Accepted Date:  18 August 2016
  • Published Online:  05 September 2016

/

返回文章
返回