Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interaction between Sso7d and DNA studied by single-molecule technique

Teng Cui-Juan Lu Yue Ma Jian-Bing Li Ming Lu Ying Xu Chun-Hua

Citation:

Interaction between Sso7d and DNA studied by single-molecule technique

Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Each organism has its own set of chromatin proteins to protect the stable structure of DNA and thus maintain the stability of genes. Sso7d is a small nonspecific DNA-binding protein from the hyperthermophilic archaea Sulfolobus solfataricus. This protein has high thermal and acid stability. It stabilizes dsDNA and constrains negative DNA supercoils. Besides, the Sso7d binds in a minor groove of DNA and causes a sharp kink in DNA. By observing the interaction between chromatin protein and DNA structure, we can understand the function and mechanism of chromatin protein. Sulfolobus solfataricus can survive at high temperature. To understand why the DNA of Sulfolobus solfataricus retains activity at high temperature, we investigate the interaction between Sso7d and DNA by atomic force microscope (AFM) and magnetic tweezers. Atomic force microscope and magnetic tweezers are advanced single molecule experimental tools that can be used to observe the interaction between individual molecules. The experimental result of AFM reveals the process of interaction between Sso7d and DNA. The DNA structure changes at a different concentration of Sso7d and depends on reaction time. At a relatively low concentration of Sso7d, DNA strand forms a kink structure. When the concentration of Sso7d is increased, DNA loops appear. Finally, DNA becomes a dense nuclear structure at a high concentration of Sso7d. If the time of the interaction between Sso7d and DNA is increased, DNA structure tends to be more compact. These results indicate that high concentration of Sso7d is important for the compact structure of DNA. We design an experiment to find out the formation of the looped structure on DNA. Moreover, we measure the angle of kinked DNA and compared it with previous result. Through the experiment of magnetic tweezers, we measure the forces of unfolding the double-stranded DNA complexed with Sso7d at different concentrations. The experimental results show that the binding between Sso7d and DNA increases the force of unfolding the double-stranded DNA. The binding energy between Sso7d and dsDNA is 3.1kBT which is calculated from experimental data. It indicates that DNA base pairs are more stable when chromatin protein Sso7d exists. These results can explain the survival of Sulfolobus in high temperature environment.
      Corresponding author: Xu Chun-Hua, xch@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574381, 11574382).
    [1]

    Luijsterburg M S, White M F, van Driel R, Dame R T 2008 Crit. Rev. Biochem. Mol. Biol. 43 393

    [2]

    Woese C R, Fox G E 1977 Proc. Natl. Acad. Sci. USA 74 5088

    [3]

    Grunstein M 1997 Nature 389 349

    [4]

    Luijsterburg M, Noom M, Wuite G, Dame R 2006 J. Struct. Biol. 156 262

    [5]

    Dame R T 2005 Mol. Microbiol. 56 858

    [6]

    Sandman K, Reeve J N 2005 Curr. Opin. Microbiol. 8 656

    [7]

    Sandman K, Reeve J N 2006 Curr. Opin. Microbiol. 9 520

    [8]

    Reeve J N, Bailey K A, Li W, Marc F, Sandman K, Soares D J 2004 Biochem. Soc. Trans. 32 227

    [9]

    Forterre P, Confalonieri F, Knapp S 1999 Mol. Microbiol. 32 669

    [10]

    Driessen R P C, Dame R T 2011 Biochem. Soc. Trans. 39 116

    [11]

    Mai V Q, Chen X, Hong R, Huang L 1998 J. Bacteriol. 180 2560

    [12]

    Choli T, Henning P, Wittmann-Liebold B, Reinhardt R 1988 Biochim. Biophys. Acta 950 193

    [13]

    Edmondson S P, Shriver J W 2001 Methods Enzymol. 334 129

    [14]

    White M F, Bell S D 2002 Trends Genet. 18 621

    [15]

    Lundbãck T, Hansson H, Knapp S, Ladenstein R, Hãrd T 1998 J. Mol. Biol. 276 775

    [16]

    Napoli A, Zivanovic Y, Bocs C, Buhler C, Rossi M, Forterre P, Ciaramella M 2002 Nucleic Acids Res. 30 2656

    [17]

    López-García P, Knapp S, Ladenstein R, Forterre P 1998 Nucleic Acids Res. 26 2322

    [18]

    Sun F, Huang L 2013 Nucleic Acids Res. 41 8182

    [19]

    Gera N, Hussain M, Wright R C, Rao B M 2011 J. Mol. Biol. 409 601

    [20]

    Hernandez Garcia A, Estrich N A, Werten M W T, van der Maarel J R C, LaBean T H, de Wolf F A, Cohen Stuart M A, de Vries R 2017 ACS Nano 11 144

    [21]

    Gera N, Hill A B, White D P, Carbonell R G, Rao B M 2012 PloS One 7 e48928

    [22]

    Gao Y G, Su S Y, Robinson H, Padmanabhan S, Lim L, McCrary B S, Edmondson S P, Shriver J W, Wang A H J 1998 Nat. Struct. Biol. 5 782

    [23]

    Su S, Gao Y G, Robinson H, Liaw Y C, Edmondson S P, Shriver J W, Wang A H J 2000 J. Mol. Biol. 303 395

    [24]

    Driessen R P C, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar U D, White M F, Schiessel H, van Noort J, Dame R T 2013 Nucleic Acids Res. 41 196

    [25]

    Lou H, Duan Z, Huo X, Huang L 2004 J. Biol. Chem. 279 127

    [26]

    Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L 2008 Nucleic Acids Res. 36 1129

    [27]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [28]

    Agback P, Baumann H, Knapp S, Ladenstein R, Hãrd T 1998 Nat. Struct. Biol. 5 579

    [29]

    Guagliardi A, Napoli A, Rossi M, Ciaramella M 1997 J. Mol. Biol. 267 841

    [30]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [31]

    Pope L H, Bennink M L, van Leijenhorst Groener K A, Nikova D, Greve J, Marko J F 2005 Biophys. J. 88 3572

    [32]

    Yang W Y, Gruebele M 2003 Nature 423 193

    [33]

    Woodside M T, Behnke-Parks W M, Larizadeh K, Travers K, Herschlag D, Block S M 2006 Proc. Natl. Acad. Sci. USA 103 6190

  • [1]

    Luijsterburg M S, White M F, van Driel R, Dame R T 2008 Crit. Rev. Biochem. Mol. Biol. 43 393

    [2]

    Woese C R, Fox G E 1977 Proc. Natl. Acad. Sci. USA 74 5088

    [3]

    Grunstein M 1997 Nature 389 349

    [4]

    Luijsterburg M, Noom M, Wuite G, Dame R 2006 J. Struct. Biol. 156 262

    [5]

    Dame R T 2005 Mol. Microbiol. 56 858

    [6]

    Sandman K, Reeve J N 2005 Curr. Opin. Microbiol. 8 656

    [7]

    Sandman K, Reeve J N 2006 Curr. Opin. Microbiol. 9 520

    [8]

    Reeve J N, Bailey K A, Li W, Marc F, Sandman K, Soares D J 2004 Biochem. Soc. Trans. 32 227

    [9]

    Forterre P, Confalonieri F, Knapp S 1999 Mol. Microbiol. 32 669

    [10]

    Driessen R P C, Dame R T 2011 Biochem. Soc. Trans. 39 116

    [11]

    Mai V Q, Chen X, Hong R, Huang L 1998 J. Bacteriol. 180 2560

    [12]

    Choli T, Henning P, Wittmann-Liebold B, Reinhardt R 1988 Biochim. Biophys. Acta 950 193

    [13]

    Edmondson S P, Shriver J W 2001 Methods Enzymol. 334 129

    [14]

    White M F, Bell S D 2002 Trends Genet. 18 621

    [15]

    Lundbãck T, Hansson H, Knapp S, Ladenstein R, Hãrd T 1998 J. Mol. Biol. 276 775

    [16]

    Napoli A, Zivanovic Y, Bocs C, Buhler C, Rossi M, Forterre P, Ciaramella M 2002 Nucleic Acids Res. 30 2656

    [17]

    López-García P, Knapp S, Ladenstein R, Forterre P 1998 Nucleic Acids Res. 26 2322

    [18]

    Sun F, Huang L 2013 Nucleic Acids Res. 41 8182

    [19]

    Gera N, Hussain M, Wright R C, Rao B M 2011 J. Mol. Biol. 409 601

    [20]

    Hernandez Garcia A, Estrich N A, Werten M W T, van der Maarel J R C, LaBean T H, de Wolf F A, Cohen Stuart M A, de Vries R 2017 ACS Nano 11 144

    [21]

    Gera N, Hill A B, White D P, Carbonell R G, Rao B M 2012 PloS One 7 e48928

    [22]

    Gao Y G, Su S Y, Robinson H, Padmanabhan S, Lim L, McCrary B S, Edmondson S P, Shriver J W, Wang A H J 1998 Nat. Struct. Biol. 5 782

    [23]

    Su S, Gao Y G, Robinson H, Liaw Y C, Edmondson S P, Shriver J W, Wang A H J 2000 J. Mol. Biol. 303 395

    [24]

    Driessen R P C, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar U D, White M F, Schiessel H, van Noort J, Dame R T 2013 Nucleic Acids Res. 41 196

    [25]

    Lou H, Duan Z, Huo X, Huang L 2004 J. Biol. Chem. 279 127

    [26]

    Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L 2008 Nucleic Acids Res. 36 1129

    [27]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [28]

    Agback P, Baumann H, Knapp S, Ladenstein R, Hãrd T 1998 Nat. Struct. Biol. 5 579

    [29]

    Guagliardi A, Napoli A, Rossi M, Ciaramella M 1997 J. Mol. Biol. 267 841

    [30]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [31]

    Pope L H, Bennink M L, van Leijenhorst Groener K A, Nikova D, Greve J, Marko J F 2005 Biophys. J. 88 3572

    [32]

    Yang W Y, Gruebele M 2003 Nature 423 193

    [33]

    Woodside M T, Behnke-Parks W M, Larizadeh K, Travers K, Herschlag D, Block S M 2006 Proc. Natl. Acad. Sci. USA 103 6190

  • [1] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [2] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [4] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [6] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [7] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [8] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [9] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [10] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [11] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [12] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [13] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [14] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [15] Enhanced luminescence of InGaN/GaN multiple quantum wells with indium doped GaN barriers. Acta Physica Sinica, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [16] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
Metrics
  • Abstract views:  7632
  • PDF Downloads:  177
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2018
  • Accepted Date:  21 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回