Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of material disorder on impact fragmentation of brittle spheres

Chen Xing Ma Gang Zhou Wei Lai Guo-Wei Lai Zhi-Qiang

Citation:

Effects of material disorder on impact fragmentation of brittle spheres

Chen Xing, Ma Gang, Zhou Wei, Lai Guo-Wei, Lai Zhi-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Brittle materials have many excellent properties for structural applications, whereas the brittleness and disorder due to defects and micro-cracks cause failure. Fragmentation may occur and often lead to a catastrophic damage, bring dangers to the users especially when brittle materials suffer dynamic loads like impact and explosion. The impact fragmentation of brittle material belongs to the continuum/discretization domain. The combined finite and discrete element method (FDEM) is used to investigate the impact fragmentation of disordered material in detail. In this work, structural disorder in the brittle material is not considered, and the disorder is only reflected in the strength heterogeneity. Assuming that the mesoscopic fracture parameters of brittle materials obey the Weibull distribution, the degree of disorder can be quantified by the Weibull modulus k. The impact of a brittle sphere against a rigid plate is simulated using the FDEM. The dynamic response can be classified into damage and fragmentation zones. In sphere with low material disorder, cracking pattern is mainly dominated by single or more penetrating cracks. Increasing the disorder degree by smaller k, branch cracks emerge. Finally, it changes into a global branch crack in highly disordered sphere. Besides, mass index analysis indicates that higher disordered sphere has a higher critical velocity in impact events, in which the critical impact velocities equal 10, 15, 40 and 80 m/s when the values of m are 10, 5, 2 and 1, respectively. Furthermore, the principal component analysis is adopted for digging the crack features from fragments morphology description. The statistics of two fragment shape indexes shows that fragments coming from the highly disordered spheres have greater variability with a rougher surface and higher flatness overall, corresponding to the fracture pattern. Finally, we conclude that the effects of disorder on impact fragmentation can be ascribed to the dominant cracking mechanism-specifically, the proportion of shear failure mechanism grows with the disorder degree, implying more non-penetrating branch cracks existing in the fragments. We demonstrate that the effect of disorder on impact fragmentation is probably a consequence of a continuous phase nucleation-avalanche-percolation transition as well.
      Corresponding author: Ma Gang, magang630@whu.edu.cn
    • Funds: Project supported by the National KeyResearch and Development Program of China (Grant No. 2016YFC0401907) and the National Natural Science Foundation of China (Grant Nos. 51509190, 51579193).
    [1]

    Halasz Z, Nakahara A, Kitsunezaki S, Kun F 2017 Phys. Rev. E 96 033006

    [2]

    Biswas S, Ray P, Roy S 2017 Phys. Rev. E 96 63003

    [3]

    Li W, Bei H, Tong Y, Dmowski W, Gao Y F 2013 Appl. Phys. Lett. 103 171910

    [4]

    Zhang Y, Zhao D, Yue Y 2017 J. Am. Ceram. Soc. 100 3434

    [5]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [6]

    Fu Y F, Liang Z Z, Tang C 2000 Chinese J. Geot. Eng. 6 705 (in Chinese) [傅宇方, 梁正召, 唐春安 2000 岩土工程学报 6 705]

    [7]

    Oddershede L, Dimon P, Bohr J 1993 Phys. Rev. Lett. 71 3107

    [8]

    Kun F, Wittel F K, Herrmann H J, Kroplin B H, Maloy K J 2006 Phys. Rev. Lett. 96 025504

    [9]

    Wittel F, Kun F, Herrmann H J, Kroplin B H 2004 Phys. Rev. Lett. 93 035504

    [10]

    Pernas-Sanchez J, Artero-Guerrero J A, Varas D, Lopez-Puente J 2015 Exp. Mech. 55 1669

    [11]

    Parab N D, Guo Z, Hudspeth M C, Claus B J, Fezzaa K, Sun T, Chen W W 2017 Int. J. Impact Eng. 106 146

    [12]

    Kun F, Herrmann H J 1999 Phys. Rev. E 59 2623

    [13]

    Behera B, Kun F, Mcnamara S, Herrmann H J 2005 J. Phys.: Condens. Matter 17 S2439

    [14]

    Sator N, Mechkov S, Sausset F 2008 EPL 81 44002

    [15]

    Wittel F K, Carmona H A, Kun F, Herrmann H J 2008 Int. J. Fract. 154 105

    [16]

    Rabczuk T, Eibl J 2003 Int. J. Numer. Meth. Eng. 56 1421

    [17]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [18]

    Silling S A, Askari E 2005 Comput. Struct. 83 1526

    [19]

    Li F, Pan J, Sinka C 2011 Int. J. Impact Eng. 38 653

    [20]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [俞寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [21]

    Munjiza A, Owen D, Bicanic N 1995 Eng. Comput. 12 145

    [22]

    Zhou W, Tang L, Liu X, Ma G, Chen M 2016 Int. J. Impact Eng. 95 165

    [23]

    Ma G, Zhou W, Chang X, Chen M 2016 Granul. Matter 18

    [24]

    Mahabadi O K, Cottrell B E, Grasselli G 2010 Rock Mech. Rock Eng. 43 707

    [25]

    Ma G, Zhou W, Ng T, Cheng Y, Chang X 2015 Acta Geotech. 10 481

    [26]

    Ma G, Zhou W, Chang X, Ng T, Yang L 2016 Powder Technol. 301 118

    [27]

    Ma G, Zhou W, Zhang Y, Wang Q, Chang X 2018 Powder Technol. 325 498

    [28]

    Ma G, Zhang Y, Zhou W, Ng T, Wang Q, Chen X 2018 Int. J. Impact Eng. 113 132

    [29]

    Carmona H A, Wittel F K, Kun F 2014 Eur. Phys. J.: Spec. Top 223 2369

    [30]

    Carmona H A, Wittel F K, Kun F, Herrmann H J 2008 Phys. Rev. E 77 051302

    [31]

    Rao K S, Noferesti H 2008 Defence Sci. J. 58 285

    [32]

    Cui J, Hao H, Shi Y 2018 Constr. Build. Mater. 160 440

    [33]

    Ma G, Zhou W, Chang X 2014 Comput. Geotech. 61 132

    [34]

    Grange S, Forquin P, Mencacci S, Hild F 2008 Int. J. Impact Eng. 35 977

    [35]

    Pisano G, Carfagni G R 2015 Constr. Build. Mater. 98 741

    [36]

    Joshi A A, Pagni P J 1994 Fire Safety J. 22 45

    [37]

    King D S, Fahrenholtz W G, Hilmas G E 2013 J. Eur. Ceram. Soc. 33 2943

    [38]

    Gorjan L, Ambrožič M 2012 J. Eur. Ceram. Soc. 32 1221

    [39]

    Siarampi E, Kontonasaki E, Andrikopoulos K S, Kantiranis N, Voyiatzis G A, Zorba T, Paraskevopoulos K M, Koidis P 2014 Dent. Mater. 30 E306

    [40]

    Guazzato M, Quach L, Albakry M, Swain M V 2005 J. Dent. 33 9

    [41]

    Yang W, Zhang G P, Zhu X F, Li X W, Meyers M A 2011 J. Mech. Behav. Biomed. 4 1514

    [42]

    Lin A Y, Meyers M A 2009 J. Mech. Behav. Biomed. 2 607

    [43]

    Gruber M, Kraleva I, Supancic P, Bielen J, Kiener D, Bermejo R 2017 J. Eur. Ceram. Soc. 37 4397

    [44]

    Wereszczak A A, Barnes A S, Breder K, Binapal S 2000 J. Mater. Sci. Mater. Electron. 11 291

    [45]

    Wittel F K, Kun F, Herrmann H J, Kroplin B H 2005 Phys. Rev. E 71 016108

    [46]

    Tomas J, Schreier M, Groger T, Ehlers S 1999 Powder Technol. 105 39

    [47]

    Khanal M, Schubert W, Tomas J 2004 Granul. Matter 5 177

    [48]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103

    [49]

    Shekhawat A, Zapperi S, Sethna J P 2013 Phys. Rev. Lett. 110 185505

  • [1]

    Halasz Z, Nakahara A, Kitsunezaki S, Kun F 2017 Phys. Rev. E 96 033006

    [2]

    Biswas S, Ray P, Roy S 2017 Phys. Rev. E 96 63003

    [3]

    Li W, Bei H, Tong Y, Dmowski W, Gao Y F 2013 Appl. Phys. Lett. 103 171910

    [4]

    Zhang Y, Zhao D, Yue Y 2017 J. Am. Ceram. Soc. 100 3434

    [5]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [6]

    Fu Y F, Liang Z Z, Tang C 2000 Chinese J. Geot. Eng. 6 705 (in Chinese) [傅宇方, 梁正召, 唐春安 2000 岩土工程学报 6 705]

    [7]

    Oddershede L, Dimon P, Bohr J 1993 Phys. Rev. Lett. 71 3107

    [8]

    Kun F, Wittel F K, Herrmann H J, Kroplin B H, Maloy K J 2006 Phys. Rev. Lett. 96 025504

    [9]

    Wittel F, Kun F, Herrmann H J, Kroplin B H 2004 Phys. Rev. Lett. 93 035504

    [10]

    Pernas-Sanchez J, Artero-Guerrero J A, Varas D, Lopez-Puente J 2015 Exp. Mech. 55 1669

    [11]

    Parab N D, Guo Z, Hudspeth M C, Claus B J, Fezzaa K, Sun T, Chen W W 2017 Int. J. Impact Eng. 106 146

    [12]

    Kun F, Herrmann H J 1999 Phys. Rev. E 59 2623

    [13]

    Behera B, Kun F, Mcnamara S, Herrmann H J 2005 J. Phys.: Condens. Matter 17 S2439

    [14]

    Sator N, Mechkov S, Sausset F 2008 EPL 81 44002

    [15]

    Wittel F K, Carmona H A, Kun F, Herrmann H J 2008 Int. J. Fract. 154 105

    [16]

    Rabczuk T, Eibl J 2003 Int. J. Numer. Meth. Eng. 56 1421

    [17]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [18]

    Silling S A, Askari E 2005 Comput. Struct. 83 1526

    [19]

    Li F, Pan J, Sinka C 2011 Int. J. Impact Eng. 38 653

    [20]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [俞寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [21]

    Munjiza A, Owen D, Bicanic N 1995 Eng. Comput. 12 145

    [22]

    Zhou W, Tang L, Liu X, Ma G, Chen M 2016 Int. J. Impact Eng. 95 165

    [23]

    Ma G, Zhou W, Chang X, Chen M 2016 Granul. Matter 18

    [24]

    Mahabadi O K, Cottrell B E, Grasselli G 2010 Rock Mech. Rock Eng. 43 707

    [25]

    Ma G, Zhou W, Ng T, Cheng Y, Chang X 2015 Acta Geotech. 10 481

    [26]

    Ma G, Zhou W, Chang X, Ng T, Yang L 2016 Powder Technol. 301 118

    [27]

    Ma G, Zhou W, Zhang Y, Wang Q, Chang X 2018 Powder Technol. 325 498

    [28]

    Ma G, Zhang Y, Zhou W, Ng T, Wang Q, Chen X 2018 Int. J. Impact Eng. 113 132

    [29]

    Carmona H A, Wittel F K, Kun F 2014 Eur. Phys. J.: Spec. Top 223 2369

    [30]

    Carmona H A, Wittel F K, Kun F, Herrmann H J 2008 Phys. Rev. E 77 051302

    [31]

    Rao K S, Noferesti H 2008 Defence Sci. J. 58 285

    [32]

    Cui J, Hao H, Shi Y 2018 Constr. Build. Mater. 160 440

    [33]

    Ma G, Zhou W, Chang X 2014 Comput. Geotech. 61 132

    [34]

    Grange S, Forquin P, Mencacci S, Hild F 2008 Int. J. Impact Eng. 35 977

    [35]

    Pisano G, Carfagni G R 2015 Constr. Build. Mater. 98 741

    [36]

    Joshi A A, Pagni P J 1994 Fire Safety J. 22 45

    [37]

    King D S, Fahrenholtz W G, Hilmas G E 2013 J. Eur. Ceram. Soc. 33 2943

    [38]

    Gorjan L, Ambrožič M 2012 J. Eur. Ceram. Soc. 32 1221

    [39]

    Siarampi E, Kontonasaki E, Andrikopoulos K S, Kantiranis N, Voyiatzis G A, Zorba T, Paraskevopoulos K M, Koidis P 2014 Dent. Mater. 30 E306

    [40]

    Guazzato M, Quach L, Albakry M, Swain M V 2005 J. Dent. 33 9

    [41]

    Yang W, Zhang G P, Zhu X F, Li X W, Meyers M A 2011 J. Mech. Behav. Biomed. 4 1514

    [42]

    Lin A Y, Meyers M A 2009 J. Mech. Behav. Biomed. 2 607

    [43]

    Gruber M, Kraleva I, Supancic P, Bielen J, Kiener D, Bermejo R 2017 J. Eur. Ceram. Soc. 37 4397

    [44]

    Wereszczak A A, Barnes A S, Breder K, Binapal S 2000 J. Mater. Sci. Mater. Electron. 11 291

    [45]

    Wittel F K, Kun F, Herrmann H J, Kroplin B H 2005 Phys. Rev. E 71 016108

    [46]

    Tomas J, Schreier M, Groger T, Ehlers S 1999 Powder Technol. 105 39

    [47]

    Khanal M, Schubert W, Tomas J 2004 Granul. Matter 5 177

    [48]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103

    [49]

    Shekhawat A, Zapperi S, Sethna J P 2013 Phys. Rev. Lett. 110 185505

  • [1] He Ying, Wang TianYi, Li YingYing. Composable security analysis of linear optics cloning machine enhanced discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] Zhang Feng-Guo, Liu Jun, He An-Min, Zhao Fu-Qi, Wang Pei. Modelling of spall damage evolution and fragment distribution for melted metals under shock release. Acta Physica Sinica, 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [4] Wang Zhi-Huan, Jia Lei-Ming, He Zeng, Tian Zhou. Method of theoretically calculating spherical stress wave field in linear-hardening materials under impact load. Acta Physica Sinica, 2022, 71(1): 018301. doi: 10.7498/aps.71.20210954
    [5] Miao Chun-He, Yuan Liang-Zhu, Lu Jian-Hua, Wang Peng-Fei, Xu Song-Lin. Deformation evolution and diffusion characteristics of polymethyl methacrylate under impact loading. Acta Physica Sinica, 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [6] Miao Chun-he,  Yuan Liangzhu,  Lu Jianhua,  WANG Pengfei,  XU Songlin. Study on deformation evolution and diffusion characteristics of PMMA under impact loading. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220740
    [7] Chu Gen-Bai, Yu Ming-Hai, Shui Min, Fan Wei, Xi Tao, Jing Long-Fei, Zhao Yong-Qiang, Wu Yu-Chi, Xin Jian-Ting, Zhou Wei-Min. Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser. Acta Physica Sinica, 2020, 69(2): 026201. doi: 10.7498/aps.69.20191245
    [8] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [9] Ji Shun-Ying, Fan Li-Fang, Liang Shao-Min. Buffer capacity of granular materials and its influencing factors based on discrete element method. Acta Physica Sinica, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [10] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [11] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. The ability of porous brittle materials to absorb and withstand high energy density pulse. Acta Physica Sinica, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [12] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [13] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids. Acta Physica Sinica, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [14] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [15] Zhao Yi. Localization in the one-dimensional systems with long-range correlated disorder. Acta Physica Sinica, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [16] Yang Li-Xia, Ge De-Biao, Zhao Yue-Hua, Wang Gang, Yan Shu. A direct discrete-finite-difference time-domain implementation of electromagnetic scattering by magnetized ferrite medium. Acta Physica Sinica, 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [17] Chen Deng-Ping, He Hong-Liang, Li Ming-Fa, Jing Fu-Qian. A delayed failure of inhomogenous brittle material under shock wave compression. Acta Physica Sinica, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [18] Cheng Yong, Zhang Xiong, Wu Lin, Mao Wei-Ming, You Li-Sha. Analysis of the correlation between γ-ray and radio emissions from γ-ray loud Blazar using the discrete correlation function. Acta Physica Sinica, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [19] XIONG SHI-JIE. THE INFLUENCE OF DISORDER ON THE ELECTRONIC STRUCTURES OF THE METALLIC SUPERL-ATT1CES——CPA METHOD. Acta Physica Sinica, 1985, 34(6): 774-783. doi: 10.7498/aps.34.774
    [20] FU ZHUO-WU. THEORY OF N-COMPONENT DISORDER MATERIALS WITH SHORT-RANGE ORDER. Acta Physica Sinica, 1985, 34(4): 493-502. doi: 10.7498/aps.34.493
Metrics
  • Abstract views:  6421
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  03 February 2018
  • Accepted Date:  20 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回