Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser

Chu Gen-Bai Yu Ming-Hai Shui Min Fan Wei Xi Tao Jing Long-Fei Zhao Yong-Qiang Wu Yu-Chi Xin Jian-Ting Zhou Wei-Min

Citation:

Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser

Chu Gen-Bai, Yu Ming-Hai, Shui Min, Fan Wei, Xi Tao, Jing Long-Fei, Zhao Yong-Qiang, Wu Yu-Chi, Xin Jian-Ting, Zhou Wei-Min
PDF
HTML
Get Citation
  • High intensity laser is an efficient method for shock generator to study the dynamic fragmentation of materials, in which the direct drive is widely utilized. The continuum phase plate is used for smoothing the focal spot of the laser, but the loading region is usually smaller than the designed value. In this work, we study an experimental technique for investigating the dynamic fragmentation of metal via indirectly driving a high-intensity laser. Firstly, the radiation distributions on the sample for four different hohlraums each with a diameter of 2 mm but different length are simulated via the IRAD software, in which the proper hohlraum with a diameter of 2 mm and a height of 2 mm is selected for the experiments. Secondly, the peak temperatures and radiation waves under different laser energy and pulse durations are measured. The peak temperature decreases simultaneously as the laser energy decreases. In addition, the loading shock waves under a peak temperature of 140 eV and different radiation waves are estimated via the hydrodynamic simulation. It is revealed that a peak pressure of several tens of gigapascals is acquired and the peak pressure is greatly increased when the 10 μm CH layer is placed on the sample. In the end, the dynamic fragmentation process via indirect drive is investigated by using the high energy X-ray radiography and photonic Doppler velocimetry. The radiograph is a snapshot at 600 ns and shows a typical result of the spall process. The first layer is measured to be 0.06 mm thick and 0.3 mm away from the unperturbed free surface. It is also exhibited that the hohlraum is expanded to a large extent but is not broken up. The jump-up velocity and time of spall are measured to be 0.65 km/s and 131 ns, respectively. The average velocity of the first layer is estimated to be (0.63 ± 0.1) km/s, obtained via the distance of 0.3 mm divided by the time difference of 469 ns (600 ns minus 131 ns). The one-dimensional loading region is 2 mm, and the flatness is better than 5 %. This work provides a reference for designing new hohlraum, shock wave loading technique and dynamic fragmentation process.
      Corresponding author: Chu Gen-Bai, cgbcc@sina.com ; Xin Jian-Ting, jane_xjt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804319, 11805177)
    [1]

    Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar

    [2]

    Resseguier T 2012 AIP Conf. Proc. 1426 1015

    [3]

    Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar

    [4]

    Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar

    [5]

    Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109

    [6]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [7]

    Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar

    [8]

    Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023

    [9]

    Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar

    [10]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar

    [11]

    Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar

    [12]

    Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar

    [13]

    Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [14]

    宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115

    Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115

    [15]

    黎航, 蒲昱东, 景龙飞, 等 2013 物理学报 62 225204Google Scholar

    Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar

    [16]

    Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008

    [17]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [18]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar

    [19]

    Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar

    [20]

    Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011

  • 图 1  激光间接驱动冲击加载物理实验示意图

    Figure 1.  The schematic view of indirect driving shock wave experiments via lasers.

    图 2  不同腔长下样品处的辐射分布

    Figure 2.  Radiation distribution in the surface of the sample for hohlraum with different lengths.

    图 3  辐射波形 (a)激光脉宽3 ns; (b)激光脉宽2 ns

    Figure 3.  Radiation wave at different pulse duration of laser: (a) 3 ns; (b) 2 ns.

    图 4  (a)不同辐射波形; (b)冲击加载波形

    Figure 4.  (a) Radiation wave; (b) loading shock wave at different pulse duration of laser.

    图 5  高能X射线动态诊断间接驱动的层裂过程

    Figure 5.  High energy X-ray radiography of spall from indirect drive by laser.

    图 6  间接驱动层裂过程的自由面速度历史

    Figure 6.  Velocity of free surface of spall from indirect drive by laser.

  • [1]

    Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar

    [2]

    Resseguier T 2012 AIP Conf. Proc. 1426 1015

    [3]

    Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar

    [4]

    Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar

    [5]

    Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109

    [6]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [7]

    Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar

    [8]

    Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023

    [9]

    Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar

    [10]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar

    [11]

    Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar

    [12]

    Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar

    [13]

    Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [14]

    宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115

    Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115

    [15]

    黎航, 蒲昱东, 景龙飞, 等 2013 物理学报 62 225204Google Scholar

    Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar

    [16]

    Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008

    [17]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [18]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar

    [19]

    Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar

    [20]

    Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011

  • [1] Wang Bi-Han, Li Bing, Liu Xu-Qiang, Wang Hao, Jiang Sheng, Lin Chuan-Long, Yang Wen-Ge. Millisecond time-resolved synchrotron radiation X-ray diffraction and high-pressure rapid compression device and its application. Acta Physica Sinica, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [2] Zhang Feng-Guo, Liu Jun, He An-Min, Zhao Fu-Qi, Wang Pei. Modelling of spall damage evolution and fragment distribution for melted metals under shock release. Acta Physica Sinica, 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [3] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [4] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [5] Zhang Bin, Cheng Peng, Li Qing-Lian, Chen Hui-Yuan, Li Chen-Yang. Breakup process of liquid jet in gas film. Acta Physica Sinica, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [6] Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun. In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction. Acta Physica Sinica, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [7] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [8] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [9] Hou Peng-Cheng, Zhong Zhe-Qiang, Wen Ping, Zhang Bin. A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility. Acta Physica Sinica, 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [10] Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming. Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion. Acta Physica Sinica, 2015, 64(4): 045201. doi: 10.7498/aps.64.045201
    [11] Chen Yong-Tao, Ren Guo-Wu, Tang Tie-Gang, Hu Hai-Bo. Experimental diagnostic of melting fragments under explosive loading. Acta Physica Sinica, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [12] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [13] Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming, Ye Wen-Hua. Simulation of spectrum of doped Ar in indirectly driven implosion target. Acta Physica Sinica, 2012, 61(17): 175201. doi: 10.7498/aps.61.175201
    [14] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [15] Su Zhao-Feng, Yang Hai-Liang, Qiu Ai-Ci, Sun Jian-Feng, Cong Pei-Tian, Wang Liang-Ping, Lei Tian-Shi, Han Juan-Juan. Measurements of energy spectra for high energy pulsed X-ray. Acta Physica Sinica, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [16] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] Cao Zhu-Rong, Jiang Shao-En, Chen Jia-Bin, Miao Wen-Yong, Zhou Wei-Min, Chen Ming, Gu Yu-Qiu, Ding Yong-Kun. Diagnostics on DD fuel area density for indirect drive on Shenguang Ⅱ. Acta Physica Sinica, 2007, 56(9): 5330-5334. doi: 10.7498/aps.56.5330
    [18] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [19] Yan Fei, Zhang Jie, Dong Quan-Li, Lu Xin, Li Ying-Jun. Numerical simulation of x-ray lasers pumped by grazing incidence pulses. Acta Physica Sinica, 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [20] ZHANG BIN, Lv BAI-DA, XIAO JUN. STUDY OF BEAM UNIFORMITY METHODS IN INDIRECT-DRIVEN LASER FUSION. Acta Physica Sinica, 1998, 47(12): 1998-2004. doi: 10.7498/aps.47.1998
Metrics
  • Abstract views:  6841
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2019
  • Accepted Date:  01 November 2019
  • Available Online:  01 January 2020
  • Published Online:  20 January 2020

/

返回文章
返回