-
High intensity laser is an efficient method for shock generator to study the dynamic fragmentation of materials, in which the direct drive is widely utilized. The continuum phase plate is used for smoothing the focal spot of the laser, but the loading region is usually smaller than the designed value. In this work, we study an experimental technique for investigating the dynamic fragmentation of metal via indirectly driving a high-intensity laser. Firstly, the radiation distributions on the sample for four different hohlraums each with a diameter of 2 mm but different length are simulated via the IRAD software, in which the proper hohlraum with a diameter of 2 mm and a height of 2 mm is selected for the experiments. Secondly, the peak temperatures and radiation waves under different laser energy and pulse durations are measured. The peak temperature decreases simultaneously as the laser energy decreases. In addition, the loading shock waves under a peak temperature of 140 eV and different radiation waves are estimated via the hydrodynamic simulation. It is revealed that a peak pressure of several tens of gigapascals is acquired and the peak pressure is greatly increased when the 10 μm CH layer is placed on the sample. In the end, the dynamic fragmentation process via indirect drive is investigated by using the high energy X-ray radiography and photonic Doppler velocimetry. The radiograph is a snapshot at 600 ns and shows a typical result of the spall process. The first layer is measured to be 0.06 mm thick and 0.3 mm away from the unperturbed free surface. It is also exhibited that the hohlraum is expanded to a large extent but is not broken up. The jump-up velocity and time of spall are measured to be 0.65 km/s and 131 ns, respectively. The average velocity of the first layer is estimated to be (0.63 ± 0.1) km/s, obtained via the distance of 0.3 mm divided by the time difference of 469 ns (600 ns minus 131 ns). The one-dimensional loading region is 2 mm, and the flatness is better than 5 %. This work provides a reference for designing new hohlraum, shock wave loading technique and dynamic fragmentation process.
-
Keywords:
- indirect drive /
- dynamic fragmentation /
- high energy X-ray radiography
[1] Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar
[2] Resseguier T 2012 AIP Conf. Proc. 1426 1015
[3] Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar
[4] Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar
[5] Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109
[6] Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar
[7] Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar
[8] Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023
[9] Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar
[10] Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar
[11] Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar
[12] Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar
[13] Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar
[14] 宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115
Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115
[15] 黎航, 蒲昱东, 景龙飞, 等 2013 物理学报 62 225204Google Scholar
Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar
[16] Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008
[17] Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar
[18] Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar
[19] Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar
[20] Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011
-
-
[1] Signor L, Lescoute E, Loison D, de Rességuier T, Dragon A, Roy G 2010 EPJ Web of Conferences 6 39012Google Scholar
[2] Resseguier T 2012 AIP Conf. Proc. 1426 1015
[3] Buttler W T, Lamoreaux S K, Schulze R K, Schwarzkopf J D, Cooley J C, Grover M, Hammerberg J E, La Lone B M, Llobet A, Manzanares R, Martinez J I, Schmidt D W, Sheppard D G, Stevens G D, Turley W D, Veeser L R 2017 J. Dyn. Behav. Mater. 3 334Google Scholar
[4] Buttler W T, Williams R J R, Najjar F M 2017 J. Dyn. Behav. Mater. 3 151Google Scholar
[5] Rességuier T, Signor L, Dragon A, Roy G 2009 Int. J. Fract. 163 109
[6] Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar
[7] Xin J, He W, Shao J, Li J, Wang P, Gu Y 2014 J. Phys. D: Appl. Phys. 47 325304Google Scholar
[8] Rességuier T, Lescoute E, Signor L, Loison D, Dragon A, Boustie M, Cuq-Lelandais J P, Berthe L 2011 EPJ Web of Conferences 10 00023
[9] Rességuier T, Loison D, Dragon A, Lescoute E 2014 Metals 4 490Google Scholar
[10] Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, van Wonterghem B 2017 Matt. Rad. Extre. 2 37Google Scholar
[11] Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H 2019 Nature 569 251Google Scholar
[12] Su X, Xia L, Liu K, Zhang P, Li P, Zhao R, Wang B 2018 Chin. Opt. Lett. 16 102201Google Scholar
[13] Chu G, Xi T, Yu M, Fan W, Zhao Y, Shui M, He W, Zhang T, Zhang B, Wu Y, Zhou W, Cao L, Xin J, Gu Y 2018 Rev. Sci. Instrum. 89 115106Google Scholar
[14] 宋天明, 杨家敏, 朱托, 易荣清, 黄成武 2013 强激光与粒子束 25 3115
Song T M, Yang J M, Zhu T, Yi R Q, Huang C W 2013 High Pow. Las. Part. Beam. 25 3115
[15] 黎航, 蒲昱东, 景龙飞, 等 2013 物理学报 62 225204Google Scholar
Li H, Pu Y D, Jing L F, et al. 2013 Acta. Phys. Sin 62 225204Google Scholar
[16] Kondratev A N, Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin A Y, Kuratov S E, Mazanov V A, Rogozkin D B, Stepushkin S N 2018 AIP Conf. Proc. 1979 080008
[17] Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar
[18] Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Le Pape S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705Google Scholar
[19] Jing L, Jiang S, Yang D, Li H, Zhang L, Lin Z, Li L, Kuang L, Huang Y, Ding Y 2015 Phys. Plasmas 22 022709Google Scholar
[20] Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, Resseguier T 2012 AIP Conf. Proc. 1426 1011
Catalog
Metrics
- Abstract views: 6841
- PDF Downloads: 80
- Cited By: 0