Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface

Zhang Xuan Zhang Tian-Ci Ge Ji-Jiang Jiang Ping Zhang Gui-Cai

Citation:

Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface

Zhang Xuan, Zhang Tian-Ci, Ge Ji-Jiang, Jiang Ping, Zhang Gui-Cai
PDF
HTML
Get Citation
  • Silica nanoparticles (NPs) are more and more useful in many engineering areas, but the dynamic behaviors of adsorption of NPs at surface are not clear, especially when there exist surfactants on the surface. The modified NPs with the nonionic dimethyl silane are partially hydrophobic, and in this paper, the surface behavior is investigated which is determined by interfacial tension and surface compression modulus. It is concluded that the dimethyl silane coverage, the brine salinity and the surfactant would affect the NPs’ adsorption. Higher salinity in brine or higher dimethyl silane coverage causes lower steady state surface tension, which is related to the hydrophobicity and adsorption amount of NPs at the surface. When the cationic surfactant concentration is lower than critical micelle concentration (CMC), the surface tension of mixture system is a little bit higher than cationic surfactant’s. Cationic surfactant can be adsorbed at NPs’ surface to change the hydrophobicity based on the electrostatic attraction, and then some surfactants are dissolved in liquid phase together with NPs, while the anionic surfactant will not do so. In the shrinking droplet process, the surface tension of the NPs with 1.5 μmol/m2 dimethyl silane decreases from ~59 mN/m at the steady state to ~50 mN/m, which proves that the NPs’ adsorption density can be higher even after infinite long time equilibrium due to the repulsive force between the NPs. Besides, the curve of interfacial tension (IFT) versus surface area shows three parts with different declining slopes. In the first part, the relatively low adsorption of NPs at the surface means weak interaction between NPs. Then in the second part, due to the irreversible adsorption, the spacing between NPs decreases with adsorption amount increasing and surface area lowering, so the increasing of NPs’ interaction leads to high surface compression modulus. After that, the IFT curve keeps flat since the NPs assembly reaches to the closest peck. With the increase of NPs’ hydrophobicity, the compression modulus increases up to ~70 mN/m, which satisfies the Gibbs criterion to resist coarsening of the foam or emulsion. However, for the mixing system, increasing surfactant concentration leads to a lower surface tension at steady state, then the surface tension difference or compression modulus decreases too. Finally, we find that the compression modulus order from high to low is as follows: NPs, cationic surfactant-NPs, anionic surfactant-NPs, surfactants. This investigation is meaningful for accounting for the enhancement of foam or emulsion stability with NPs affected by salinity and surfactant.
      Corresponding author: Zhang Gui-Cai, zhanggc@upc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51574266) and the Fundamental Research Funds for the Central Universities (Grant No. 17 CX06012)
    [1]

    Sozer N, Kokini J L 2009 Trends Biotechnol. 27 82Google Scholar

    [2]

    侯静菲, 杨延莲, 王琛 2017 物理化学学报 33 63Google Scholar

    Hou J F, Yang Y L, Wang C 2017 Acta Phys.-Chim. Sin. 33 63Google Scholar

    [3]

    Soleimani M, Khani A, Najafzadeh K 2012 J. Mol. Catal. B: Enzym. 74 1Google Scholar

    [4]

    Arjang S, Manteghian M, Mohammadi A 2013 Chem. Eng. Res. Des. 91 1050Google Scholar

    [5]

    Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W 2015 Soft Matter 12 946

    [6]

    Kim I, Worthen A J, Johnston K P, DiCarlo D A, Huh C 2016 J. Nanopart. Res. 18 82Google Scholar

    [7]

    叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 214703

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 214703

    [8]

    Binks B P 2002 Curr. Opin. Colloid. Interface Sci. 7 21Google Scholar

    [9]

    Bizmark N, Ioannidis M A, Henneke D E 2014 Langmuir 30 710Google Scholar

    [10]

    Roger K, Cabane B 2012 Angew. Chem. Int. Ed. 51 5625Google Scholar

    [11]

    Kutuzov S, He J, Tangirala R, Emrick T, Russell T, Böker A 2007 Phys. Chem. Chem. Phys. 9 6351Google Scholar

    [12]

    Zang D, Zhang Y, Hou Q 2012 Colloids Surf., A 395 262Google Scholar

    [13]

    Zhang Y, Wang S, Zhou J, Zhao R, Benz G, Tcheimou S, Meredith J C, Behrens S H 2017 Langmuir 33 4511Google Scholar

    [14]

    Du K, Glogowski E, Emrick T, Russell T P, Dinsmore A D 2010 Langmuir 26 12518Google Scholar

    [15]

    Hua X, Frechette J, Bevan M A 2018 Soft matter 14 3818Google Scholar

    [16]

    Chai Y, Lukito A, Jiang Y, Ashby P D, Russell T P 2017 Nano Lett. 17 6453Google Scholar

    [17]

    Maestro A, Rio E, Drenckhan W, Langevin D, Salonen A 2014 Soft Matter 10 6975Google Scholar

    [18]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125Google Scholar

    [19]

    Safouane M, Langevin D, Binks B 2007 Langmuir 23 11546Google Scholar

    [20]

    Monteux C, Fuller G G, Bergeron V 2004 J. Phys. Chem. B 108 16473Google Scholar

    [21]

    Santini E, Krägel J, Ravera F, Liggieri L, Miller R 2011 Colloids Surf. A 382 186Google Scholar

    [22]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interface Sci. 228 55Google Scholar

    [23]

    Worthen A J, Tran V, Cornell K A, Truskett T M, Johnston K P 2016 Soft Matter 12 2025Google Scholar

    [24]

    Cui Z G, Yang L L, Cui Y Z, Binks B 2009 Langmuir 26 4717

    [25]

    Zhang H, Yu K, Cayre O J, Harbottle D 2016 Langmuir 32 13472Google Scholar

    [26]

    臧渡洋, 张永建, Langevin Dominique 2011 物理学报 60 076801

    Zang D Y, Zhang Y J, Langevin D 2011 Acta Phys. Sin. 60 076801

    [27]

    Zang D, Rio E, Delon G, Langevin D, Wei B, Binks B 2011 Mol. Phys. 109 1057Google Scholar

  • 图 1  1.5 μmol/m2 DM 纳米颗粒(1.0 wt.%)在不同浓度盐水中的动态表面张力

    Figure 1.  Salinity effects on the dynamic and steady state IFT when the DM coverage is 1.5 μmol/m2 with the NPs concentration is 1.0 wt.%.

    图 2  不同改性纳米颗粒(1.0 wt.%) 在2 M NaCl + 0.25 M CaCl2盐水中的动态表面张力

    Figure 2.  Effects of the DM coverage on the dynamic and steady state IFT with 1.0 wt.% concentration in the brine of 2 M NaCl + 0.25 M CaCl2.

    图 3  阴、阳离子活性剂与改性纳米颗粒复配体系表面张力 (a) 1.5 μmol/m2 DM纳米颗粒溶液中加入不同浓度TTAB; (b) 1.5 μmol/m2 DM纳米颗粒中加入不同浓度AOS

    Figure 3.  The IFT of mixing solution of different surfactant with 1.0 wt.% NPs: (a) 1.5 μmol/m2 DM NPs solutions with different concentrations of TTAB; (b) 1.5 μmol/m2 DM NPs solutions with different concentrations of AOS

    图 4  液滴平衡前后收缩过程表面张力变化曲线(2 M NaCl + 0.25 M CaCl2, 溶液质量密度为1.0 wt.%)

    Figure 4.  IFT in the shrinking process versus the surface area change (in the 2 M NaCl + 0.25 M CaCl2 brine with 1.0 wt.% concentration).

    图 5  不同体系液滴收缩过程中表面张力的变化, 溶液质量密度为1 wt.% (a), (b) 不同疏水性纳米颗粒溶液, 盐含量2 M NaCl+0.25 M CaCl2; (c), (d) 不同盐浓度溶液, 1.5 μmol/m2 DM纳米颗粒

    Figure 5.  IFT at different Aw/A ratios during droplet shrinking for (a) and (b) NPs with difference DM coverage at the fixed concentration of 1 wt.% in 2 M NaCl+0.25 M CaCl2 brine; for (c) and (d) 1 wt.% 1.5 μmol/m2 DM NPs solutions with various salinities

    图 6  质量浓度为1.0 wt.%的不同纳米颗粒-活性剂体系液滴收缩过程中表面张力的变化 (a) 1.5 μmol/m2 DM纳米颗粒中加入不同浓度TTAB; (b) 1.5 μmol/m2 DM纳米颗粒中加入TTAB或AOS, 表面张力初始值相近

    Figure 6.  IFT at different Aw/A ratios during droplet shrinking in DI water with 1.0 wt.% NPs: (a) 1.5 μmol/m2 DM NPs solutions with different TTAB concentrations; (b) 1.5 μmol/m2 DM NPs solutions with TTAB and AOS with same beginning IFT

    表 1  液滴持续收缩过程中不同改性纳米颗粒溶液体系的平均表面压缩模量

    Table 1.  The compression modulus of various hydrophobic NPs solutions in 2 M NaCl + 0.25 M CaCl2 brine with continuous shrinking droplet.

    0.8 μmol/m2 DM1.2 μmol/m2 DM1.5 μmol/m2 DM
    前段中段前段中段前段中段
    表面压缩模量/mN·m–1~26~58~39~70~36~67
    DownLoad: CSV

    表 2  液滴持续收缩过程中改性纳米颗粒溶液在不同盐含量条件下的表面压缩模量

    Table 2.  The compression modulus of 1.5 μmol/m2 DM NPs solutions in various salinity brine with continuous shrinking droplet

    超纯水2.5 M NaCl2 M NaCl + 0.25 M CaCl2
    前段中段前段中段前段中段
    表面压缩模量/mN·m–1~0~0~22~68~36~67
    DownLoad: CSV
  • [1]

    Sozer N, Kokini J L 2009 Trends Biotechnol. 27 82Google Scholar

    [2]

    侯静菲, 杨延莲, 王琛 2017 物理化学学报 33 63Google Scholar

    Hou J F, Yang Y L, Wang C 2017 Acta Phys.-Chim. Sin. 33 63Google Scholar

    [3]

    Soleimani M, Khani A, Najafzadeh K 2012 J. Mol. Catal. B: Enzym. 74 1Google Scholar

    [4]

    Arjang S, Manteghian M, Mohammadi A 2013 Chem. Eng. Res. Des. 91 1050Google Scholar

    [5]

    Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W 2015 Soft Matter 12 946

    [6]

    Kim I, Worthen A J, Johnston K P, DiCarlo D A, Huh C 2016 J. Nanopart. Res. 18 82Google Scholar

    [7]

    叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 214703

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 214703

    [8]

    Binks B P 2002 Curr. Opin. Colloid. Interface Sci. 7 21Google Scholar

    [9]

    Bizmark N, Ioannidis M A, Henneke D E 2014 Langmuir 30 710Google Scholar

    [10]

    Roger K, Cabane B 2012 Angew. Chem. Int. Ed. 51 5625Google Scholar

    [11]

    Kutuzov S, He J, Tangirala R, Emrick T, Russell T, Böker A 2007 Phys. Chem. Chem. Phys. 9 6351Google Scholar

    [12]

    Zang D, Zhang Y, Hou Q 2012 Colloids Surf., A 395 262Google Scholar

    [13]

    Zhang Y, Wang S, Zhou J, Zhao R, Benz G, Tcheimou S, Meredith J C, Behrens S H 2017 Langmuir 33 4511Google Scholar

    [14]

    Du K, Glogowski E, Emrick T, Russell T P, Dinsmore A D 2010 Langmuir 26 12518Google Scholar

    [15]

    Hua X, Frechette J, Bevan M A 2018 Soft matter 14 3818Google Scholar

    [16]

    Chai Y, Lukito A, Jiang Y, Ashby P D, Russell T P 2017 Nano Lett. 17 6453Google Scholar

    [17]

    Maestro A, Rio E, Drenckhan W, Langevin D, Salonen A 2014 Soft Matter 10 6975Google Scholar

    [18]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125Google Scholar

    [19]

    Safouane M, Langevin D, Binks B 2007 Langmuir 23 11546Google Scholar

    [20]

    Monteux C, Fuller G G, Bergeron V 2004 J. Phys. Chem. B 108 16473Google Scholar

    [21]

    Santini E, Krägel J, Ravera F, Liggieri L, Miller R 2011 Colloids Surf. A 382 186Google Scholar

    [22]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interface Sci. 228 55Google Scholar

    [23]

    Worthen A J, Tran V, Cornell K A, Truskett T M, Johnston K P 2016 Soft Matter 12 2025Google Scholar

    [24]

    Cui Z G, Yang L L, Cui Y Z, Binks B 2009 Langmuir 26 4717

    [25]

    Zhang H, Yu K, Cayre O J, Harbottle D 2016 Langmuir 32 13472Google Scholar

    [26]

    臧渡洋, 张永建, Langevin Dominique 2011 物理学报 60 076801

    Zang D Y, Zhang Y J, Langevin D 2011 Acta Phys. Sin. 60 076801

    [27]

    Zang D, Rio E, Delon G, Langevin D, Wei B, Binks B 2011 Mol. Phys. 109 1057Google Scholar

  • [1] Liu Wang-Wang, Zhang Ke-Xue, Wang Jun, Xia Guo-Dong. Simulation study of drag force characteristics of nanoparticles in transition regime. Acta Physica Sinica, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] Huang Hao-Wei, Liang Hong, Xu Jiang-Rong. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability. Acta Physica Sinica, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] Zhou Hao, Li Yi, Liu Hai, Chen Hong, Ren Lei-Sheng. Optimized transportation meshfree method and its apllication in simulating droplet surface tension effect. Acta Physica Sinica, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [5] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [6] Shen Wan-Ping, You Shi-Jia, Mao Hong. Phase structure and surface tension in quark meson model. Acta Physica Sinica, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [7] Ai Xu-Peng, Ni Bao-Yu. Influence of viscosity and surface tension of fluid on the motion of bubbles. Acta Physica Sinica, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam. Acta Physica Sinica, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] Li Yuan, Luo Xi-Sheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability. Acta Physica Sinica, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] Song Bao-Wei, Ren Feng, Hu Hai-Bao, Guo Yun-He. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect. Acta Physica Sinica, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [13] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [14] Zang Du-Yang, Zhang Yong-Jian. Interfacial rheological study of silica nanoparticle monolayer by an indentation approach. Acta Physica Sinica, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [15] Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Ding Wei-Peng, Gong Wei, Chen Yi-Chong. The strong hydrophobic properties on nanoparticles adsorbed core surfaces. Acta Physica Sinica, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [16] Liu Yan-Hua, Gan Fu-Jun, Zhang Kai. Nucleation and coagulation of nanoparticles in a planar jet. Acta Physica Sinica, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [17] Liu Xiu-Mei, He Jie, Lu Jian, Ni Xiao-Wu. The effect of surface tension on bubble oscillation near a rigid boundary. Acta Physica Sinica, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [18] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] Zhang La-Bao, Dai Fu-Ping, Xiong Yu-Ying, Wei Bing-Bo. Surface tension of a highly supercooled Ni-15%Sn alloy melt. Acta Physica Sinica, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [20] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
Metrics
  • Abstract views:  12242
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2019
  • Accepted Date:  12 November 2019
  • Published Online:  20 January 2020

/

返回文章
返回