搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间接驱动内爆靶丸示踪元素Ar发射X光谱线的理论模拟研究

乔秀梅 郑无敌 高耀明

引用本文:
Citation:

间接驱动内爆靶丸示踪元素Ar发射X光谱线的理论模拟研究

乔秀梅, 郑无敌, 高耀明

Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion

Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming
PDF
导出引用
  • 惯性约束聚变内爆物理研究中, 示踪元素X光谱线诊断方法是推测内爆压缩温度、密度以及燃料混合的有效办法, 因此, 对示踪元素X光发射的规律及其与内爆过程的关系的研究非常必要, 有助于通过谱线发射特征诊断内爆状态. 以SGIII原型装置的实验条件下的内爆过程为例, 对内爆靶丸示踪元素Ar发射X光谱线进行了理论模拟. 研究了谱线自吸收效应、Ar掺杂浓度、等离子体空间分布不均匀等对Ar发射的X光谱线分布的影响. 还对Ar发射X光谱线强度的时间演化及其与内爆过程的关系进行了研究. 结果表明, 增加掺杂浓度, 谱线强度增强, 但是谱线自吸收效应的影响也明显增强. 示踪元素Ar发射的X光谱线强度的峰值时刻与中子产生速率的峰值时刻接近(前者延迟约15 ps). 高温、高密度及合适的电离度是谱线发射的3个条件, 在X光谱线发射的峰值时刻, 由于燃料芯部Ar等离子体过电离, Ar等离子体发射的X光谱线的空间峰值区域靠近燃料边界区域, 占燃料总体积56%的薄壳(厚度~4 μm), 其发射的X光谱线强度约为总强度的72%. 因此, 对发射谱线分布拟合得到的空间平均的等离子体温度、密度主要反映这一区域的等离子体状态.
    As the X-ray spectrum of tracer in inertial confinement fusion implosion target is usually used to infer electron temperature, density, and the mixture of fuel and shell, it is necessary to study the relation between the characteristics of X-ray emission spectrum and the implosion process, which is helpful for inferring the implosion status. Under the condition of SGIII prototype, approximately 0.5% atomic percent of Ar atoms are doped in an indirectly driven implosion target, X-ray spectrum of Ar is numerically simulated. In this article, the influences of line re-absorption effect, tracer concentration, and profile of fuel plasma state on the emission spectrum are studied. The relation between the temporal evolution of the emission spectrum and the implosion process is also investigated. It is found that as the tracer concentration increases up to ~1%, the X-ray intensity is enhanced, but the influence of line re-absorption becomes severe. Temporal evolution shows that the peak time of Ar X-ray intensity is almost the same as that of neutron production (the former delays about 15 ps, which usually cannot be resolved). As is well known, the strong line emission occurs in the plasma with high temperature, high electron density, and proper ionization. The detailed analysis shows that at the peak emission time, as the core Ar plasma is over ionized, the main X-ray line emission region is located near the boundary region of the fuel, and this thin shell, whose thickness is about 4 μm and whose volume accounts for 56% of the total fuel plasma volume, emits the X-ray whose intensity is about 72% of the total line intensity. Therefore, the space-averaged plasma temperature and density, which are obtained by fitting the emission spectrum, mainly reflect the plasma state in this region.
    • 基金项目: 国家自然科学基金(批准号: 11475033)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475033).
    [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 物理学报 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

  • [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 物理学报 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

  • [1] 马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌. 用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究. 物理学报, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [3] 沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩. 强场X射线激光物理. 物理学报, 2021, 70(8): 084101. doi: 10.7498/aps.70.20210096
    [4] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [5] 王雅琴, 胡广月, 赵斌, 郑坚. 神光Ⅲ激光装置直接驱动内爆靶产生的连续谱X光源. 物理学报, 2017, 66(11): 115202. doi: 10.7498/aps.66.115202
    [6] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [7] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [8] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射. 物理学报, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] 庞哲, 王爽, 李辉, 徐春华, 李明. 用荧光显微示踪方法研究RecA在DNA同源识别过程中的工作机理. 物理学报, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [10] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [11] 乔秀梅, 郑无敌, 高耀明, 叶文华. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究. 物理学报, 2012, 61(17): 175201. doi: 10.7498/aps.61.175201
    [12] 曹思, 龚佳, 钟澄, 李劲, 蒋益明. 同位素示踪法研究铜薄膜在水汽中的氧化传质机理. 物理学报, 2011, 60(7): 078101. doi: 10.7498/aps.60.078101
    [13] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [14] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [15] 远晓辉, 李玉同, 徐妙华, 于全芝, 王首钧, 张 杰, 赵 卫, 王光昶, 温贤伦, 焦春晔, 何颖伶, 张双根, 王向贤, 黄文忠, 谷渝秋. 超热电子产生的靶后相干渡越辐射光谱实验研究. 物理学报, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [16] 燕 飞, 张 杰, 董全力, 鲁 欣, 李英骏. 掠入射驱动产生x射线激光的数值模拟. 物理学报, 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [17] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [18] 林尊琪, 张燕珍, 毕无忌, 陆海鹤, 何兴法, 赵志文, 韦小春, 施阿英, 王笑琴, 林康春, 李家明, 董骐. 激光内爆靶的四分幅X射线阴影成像诊断实验和理论模拟. 物理学报, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
    [19] 蔡伟, 葛森林, 吴自勤. 纯元素厚试样的标识X射线强度比. 物理学报, 1981, 30(7): 895-907. doi: 10.7498/aps.30.895
    [20] 陈箎, 李华林, 丁家言. 论元素互致X射线荧光辐射强度. 物理学报, 1963, 19(11): 727-734. doi: 10.7498/aps.19.727
计量
  • 文章访问数:  5312
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 修回日期:  2014-08-29
  • 刊出日期:  2015-02-05

/

返回文章
返回