-
The effects of the reflection of electrons and negative ions in magnetized electronegative and collisional plasma sheath on the Bohm criterion and the sheath structure are numerically investigated. The Bohm criterion expression of the sheath with considering the reflection of electrons and negative ions is derived theoretically. The lower limit of ion Mach number versus parameters and the distribution curve of charged particle density in sheath are obtained by numerical simulation when Boltzmannian model and reflection model are applied to electrons and negative ions. The results show that the upper limit of ion Mach number is identical to that of Boltzmannian model, but their lower limit expressions are different. The lower limit of ion Mach number in the reflection model is also related to the wall potential, and with the increase of the wall potential, ion Mach number first increases and then remains unchanged after reaching the same value as that from Boltzmannian model, and the speeds of their reaching the maximum values are different due to the difference in sheath edge negative ion concentration and temperature. In both Boltzmannian and the reflection model, the lower limit of the ion Mach number decreases with the concentration of the negative ion at the sheath edge increasing and the negative ion temperature decreasing, but the maximum value is smaller in the reflection model. The lower limit of ion Mach number for each of the two models increases with sheath edge electric field increasing, but increases faster and the final value is larger in Boltzmannian model. The lower limit of ion Mach number for each of the two models decreases with the increase of collision parameter or magnetic field angle, but decreases faster in Boltzmannian model with the increase of collision parameter or magnetic field angle. The lower limits of ion Mach number in the two models tend to be the same with the increase of magnetic field angle. When the wall potential is small, the reflection of electrons and negative ions has a great influence on the sheath structure. When the wall potential is large, the reflection of electrons and negative ions have little effect on the density distribution of charged particles in the sheath.
-
Keywords:
- reflection of electrons and negative ions /
- magnetized electronegative sheath /
- Bohm criterion /
- sheath structure
[1] Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229Google Scholar
[2] Femandez Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937Google Scholar
[3] Femandez Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341Google Scholar
[4] Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma. Phys. 60 81Google Scholar
[5] Ming L, Michael A V, Steven K D, Brett M J 2000 IEEE Trans. Plasma Sci. 28 248Google Scholar
[6] WANG Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537Google Scholar
[7] Yasserian K, Aslaninejad M, Ghoranneviss M 2009 Phys. Plasmas 16 023504Google Scholar
[8] Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501Google Scholar
[9] Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Comput. Phys. 27 883
[10] Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar
[11] Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302Google Scholar
[12] Ghomi H, Khoramabadi M 2010 J. Plasma. Phys. 76 247Google Scholar
[13] Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201Google Scholar
[14] Ghomi H Khoramabadi M 2011 J Fusion Energ 30 481Google Scholar
[15] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2012 物理学报 61 035201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201Google Scholar
[16] 邱明辉, 刘惠平, 邹秀 2012 物理学报 61 155204Google Scholar
Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204Google Scholar
[17] Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506Google Scholar
[18] Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar
[19] Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26
[20] Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507Google Scholar
[21] Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108Google Scholar
[22] Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501Google Scholar
[23] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 物理学报 65 245201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar
[24] Sobolewski M A, Wang Y C, Goyette A 2017 J. Appl. Phys. 122 053302Google Scholar
[25] Regodon G F, Femandez-Palop J I, Tejero-del-Caz A, Diaz-Cabrera J M, Carmona-Cabezas R, Ballesteros J 2018 Plasma Sources Sci. Technol. 2018 27
[26] Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2018 Phys. Plasmas 25 053510Google Scholar
[27] Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar
[28] Tskhakaya D D, Shukla P K, Eliasson B, Kuhn S 2005 Phys. Plasmas 12 103503Google Scholar
[29] Pandey B P, Samarian A, Vladimirov S V 2007 Phys. Plasmas 14 093703Google Scholar
[30] Zimmermann T M G, Coppins M, Allen J E 2009 Phys. Plasmas 16 043501Google Scholar
[31] Zimmermann T M G, Coppins M, Allen J E 2010 Phys. Plasmas 17 022301Google Scholar
[32] Krasheninnikova N S, Tang X, Roytershteyn V S 2010 Phys. Plasmas 17 057103Google Scholar
[33] Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 075002Google Scholar
[34] Sheehan J P, Kaganovich I D, Wang H, Sydorenko D, Raitses Y, Hershkowitz N 2014 Phys. Plasmas 21 063502Google Scholar
[35] Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar
[36] Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar
[37] 邹秀, 邹滨雁, 籍延坤 2010 物理学报 59 1902Google Scholar
Zou X, Zou B Y, Ji Y K 2010 Acta Phys. Sin. 59 1902Google Scholar
-
图 2 负离子浓度和温度对离子马赫数下限的影响(
$\nu = 0.1$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,${E_0} = 0.05$ ,${\eta _{\rm{w}}} = 0.3$ ) (a)玻尔兹曼模型; (b)反射模型Figure 2. The effects of negative ions concentration and temperature on the lower limit of ion Mach number (
$\nu = 0.1$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,${E_0} = 0.05$ ,${\eta _{\rm{w}}} = 0.3$ ): (a) Boltzmannian model; (b) reflection model.图 4 鞘边电场对离子马赫数下限的影响(
$\nu = 0.1$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ )Figure 4. The effect of the sheath edge electric field on the lower limit of ion Mach number (
$\nu = 0.1$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ ).图 5 碰撞参数对离子马赫数下限的影响(
${E_0} = 0.05$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ )Figure 5. The effect of collision parameter on the lower limit of ion Mach number (
${E_0} = 0.05$ ,$B = 0.1 \;{\rm T}$ ,$\theta = {30^ \circ }$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ ).图 6 磁场角度对离子马赫数下限的影响(
${E_0} = 0.05$ ,$B = 0.1\;{\rm{ T}}$ ,$\nu = 0.1$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ )Figure 6. The effect of magnetic field angle on the lower limit of ion Mach number (
${E_0} = 0.05$ ,$B = 0.1\;{\rm{ T}}$ ,$\nu = 0.1$ ,$\alpha = 0.2$ ,$\sigma = 50$ ,${\eta _{\rm{w}}} = 0.3$ ). -
[1] Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229Google Scholar
[2] Femandez Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937Google Scholar
[3] Femandez Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341Google Scholar
[4] Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma. Phys. 60 81Google Scholar
[5] Ming L, Michael A V, Steven K D, Brett M J 2000 IEEE Trans. Plasma Sci. 28 248Google Scholar
[6] WANG Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537Google Scholar
[7] Yasserian K, Aslaninejad M, Ghoranneviss M 2009 Phys. Plasmas 16 023504Google Scholar
[8] Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501Google Scholar
[9] Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Comput. Phys. 27 883
[10] Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar
[11] Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302Google Scholar
[12] Ghomi H, Khoramabadi M 2010 J. Plasma. Phys. 76 247Google Scholar
[13] Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201Google Scholar
[14] Ghomi H Khoramabadi M 2011 J Fusion Energ 30 481Google Scholar
[15] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2012 物理学报 61 035201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201Google Scholar
[16] 邱明辉, 刘惠平, 邹秀 2012 物理学报 61 155204Google Scholar
Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204Google Scholar
[17] Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506Google Scholar
[18] Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar
[19] Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26
[20] Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507Google Scholar
[21] Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108Google Scholar
[22] Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501Google Scholar
[23] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 物理学报 65 245201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar
[24] Sobolewski M A, Wang Y C, Goyette A 2017 J. Appl. Phys. 122 053302Google Scholar
[25] Regodon G F, Femandez-Palop J I, Tejero-del-Caz A, Diaz-Cabrera J M, Carmona-Cabezas R, Ballesteros J 2018 Plasma Sources Sci. Technol. 2018 27
[26] Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2018 Phys. Plasmas 25 053510Google Scholar
[27] Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar
[28] Tskhakaya D D, Shukla P K, Eliasson B, Kuhn S 2005 Phys. Plasmas 12 103503Google Scholar
[29] Pandey B P, Samarian A, Vladimirov S V 2007 Phys. Plasmas 14 093703Google Scholar
[30] Zimmermann T M G, Coppins M, Allen J E 2009 Phys. Plasmas 16 043501Google Scholar
[31] Zimmermann T M G, Coppins M, Allen J E 2010 Phys. Plasmas 17 022301Google Scholar
[32] Krasheninnikova N S, Tang X, Roytershteyn V S 2010 Phys. Plasmas 17 057103Google Scholar
[33] Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 075002Google Scholar
[34] Sheehan J P, Kaganovich I D, Wang H, Sydorenko D, Raitses Y, Hershkowitz N 2014 Phys. Plasmas 21 063502Google Scholar
[35] Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar
[36] Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar
[37] 邹秀, 邹滨雁, 籍延坤 2010 物理学报 59 1902Google Scholar
Zou X, Zou B Y, Ji Y K 2010 Acta Phys. Sin. 59 1902Google Scholar
Catalog
Metrics
- Abstract views: 6364
- PDF Downloads: 128
- Cited By: 0