-
As a unique nanomanipulation and nanofabrication tool, dip-pen nanolithography (DPN) has enjoyed great success in the past two decades. The DPN can be used to create molecular patterns with nanoscale precision on a variety of substrates with different chemistry properties. Since its advent, the DPN has been steadily improved in the sense of applicable inks, fabrication throughput, and new printing chemistry. Among these developments, mechanical force induced mechanochemistry is of special interest. In this review, we introduce the physical principles behind the DPN technique. We highlight the development of DPN for writing with various types of “inks”, including small molecules, viscous polymer solutions, lipids, and biomolecules, especially, the development of thermal-DPN allowing printing with inks that are usually in solid phase at room temperature. Next, we introduce the parallel-DPN and polymer pen nanolithography. These techniques greatly speed up the fabrication speed without sacrificing the precision. We also summarize the advances in chemical reaction based DPN technologies, including electrochemical DPN, metal tip-induced catalytical DPN, and mechanochemical DPN (or mechanochemical printing). To further elaborate the mechanism behind the mechanochemical printing, we briefly review the development of mechanochemistry, including the reaction mechanism, various experimental approaches to realizing mechanochemistry, and recent development in this field. We highlight the advantages of using atomic force microscopy to study mechanochemistry at a single molecule level and indicate the potential of combining this technique with DPN to realize mechanochemical printing. We envision that with the further discovery of novel mechanophores that are suitable for mechanochemical printing, this technique can be broadly applied to nanotechnology and atomic fabrication. -
Keywords:
- atomic force microscopy /
- single molecule force spectroscopy /
- mechanochemistry /
- dip-pen nanolithography
[1] Bouchiat V, Esteve D 1996 Appl. Phys. Lett. 69 3098Google Scholar
[2] He H, Li C, Wang J, Zhang H, Liu Z 1997 Acta Phys.-Chim. Sin. 13 293Google Scholar
[3] Shi J, Chen J, Cremer P S 2008 J. Am. Chem. Soc. 130 2718Google Scholar
[4] Liu G Q, Chen L N, Liu J, Qiu M, Xie Z, Chang J, Zhang Y K, Li P, Lei D Y, Zheng Z J 2018 Adv. Mater. 30 1801772Google Scholar
[5] Xie X N, Deng M, Xu H, Yang S W, Qi D C, Gao X Y, Chung H J, Sow C H, Tan V B C, Wee A T S 2006 J. Am. Chem. Soc. 128 2738Google Scholar
[6] Nie Z, Kumacheva E 2008 Nat. Mater. 7 277Google Scholar
[7] Yan Y, Geng Y, Hu Z 2015 Int. J. Mach. Tool.Manu. 99 1Google Scholar
[8] Jaschke M, Butt H J, Manne S, Gaub H E, Hasemann O, Krimphove F, Wolff E K 1996 Biosens. Bioelectron. 11 601Google Scholar
[9] Jaschke M, Butt H J 1995 Langmuir 11 1061Google Scholar
[10] Piner R D, Zhu J, Xu F, Hong S, Mirkin C A 1999 Science 283 661Google Scholar
[11] Zhang H, Elghanian R, Amro N A, Disawal S, Eby R 2004 Nano Lett. 4 1649Google Scholar
[12] Lu G, Chen Y, Li B, Zhou X, Xue C, Ma J, Boey F Y C, Zhang H 2009 J. Phys. Chem. C 113 4184Google Scholar
[13] Li B, Goh C F, Zhou X, Lu G, Tantang H, Chen Y, Xue C, Boey F Y C, Zhang H 2008 Adv. Mater. 20 4873Google Scholar
[14] Li B, Lu G, Zhou X, Cao X, Zhang H 2009 Langmuir Acs. J. Surf. Coll. 25 10455Google Scholar
[15] Sheehan P, Whitman L, King W, Nelson B 2004 Appl. Phys. Lett. 85 1589Google Scholar
[16] Maynor B W, Li J, Lu C, Liu J 2004 J. Am. Chem. Soc. 126 6409Google Scholar
[17] Wang J, Kouznetsova T B, Craig S L 2015 J. Am. Chem.Soc. 137 11554Google Scholar
[18] Mason T J, Lorimer J P 2002 Appl. Sonochem. 9 885Google Scholar
[19] Dudko O K, Hummer G, Szabo A 2008 Proc. Nat. Aca. USA 105 15755Google Scholar
[20] Wang J, Kouznetsova T B, Niu Z, Ong M T, Klukovich H M, Rheingold A L, Martinez T J, Craig S L 2015 Nat. Chem. 7 323Google Scholar
[21] Akbulatov S, Tian Y, Huang Z, Kucharski T J, Yang Q-Z, Boulatov R 2017 Science 357 299Google Scholar
[22] Brown K A, Eichelsdoerfer D J, Liao X, He S, Mirkin C A 2014 Front. Phys. 9 385Google Scholar
[23] Saha S K, Culpepper M L 2010 J. Phys. Chem. C 114 15364Google Scholar
[24] Urtizberea A, Hirtz M, Fuchs H 2015 Nanofabrication 2 43Google Scholar
[25] Sheehan P E, Whitman L J 2002 Phys. Rev. Lett. 88 156104Google Scholar
[26] Weeks B L, Noy A, Miller A E, De Yoreo J J 2002 Phys. Rev. Lett. 88 255505Google Scholar
[27] Jang J, Schatz G C, Ratner M A 2003 Phys. Rev. Lett. 90 156104Google Scholar
[28] Jang J, Schatz G C, Ratner M A 2004 Phys. Rev. Lett. 92 085504Google Scholar
[29] O’Connell C D, Higgins M J, Marusic D, Moulton S E, Wallace G G 2014 Langmuir Acs.Surf. Coll. 30 2712Google Scholar
[30] Eichelsdoerfer D J, Brown K A, Mirkin C A 2014 Soft Matter. 10 5603Google Scholar
[31] Liu G L, Zhou Y, Banga R S, Boya R, Brown K A, Chipre A J, Nguyen S T, Mirkin C A 2013 Chem. Sci. 4 2093Google Scholar
[32] Hirtz M, Corso R, Sekula-Neuner S, Fuchs H 2011 Langmuir Acs J. Surf. Coll. 27 11605Google Scholar
[33] Hirtz M, Oikonomou A, Georgiou T, Fuchs H, Vijayaraghavan A 2013 Nat. Commun. 4 2591Google Scholar
[34] Gavutis M, Navikas V, Rakickas T, Vaitekonis S, Valiokas R 2016 J. Micromech. Microeng. 26 025016Google Scholar
[35] Willems N, Urtizberea A, Verre A F, Iliut M, Lelimousin M, Hirtz M, Vijayaraghavan A, Sansom M S P 2017 Acs Nano 11 1613Google Scholar
[36] Nelson B A, King W P, Laracuente A R, Sheehan P E, Whitman L J 2006 Appl. Phys. Lett. 88 033104Google Scholar
[37] Chung S, Felts J R, Wang D, King W P, Yoreo J J D 2011 Appl. Phys. Lett. 99 193101Google Scholar
[38] Felts J R, Somnath S, Ewoldt R H, King W P 2012 Nanotechnology 23 215301Google Scholar
[39] Szoszkiewicz R, Okada T, Jones S C, Li T D, King W P, Marder S R, Riedo E 2007 Nano Lett. 7 1064Google Scholar
[40] Hong S H, Mirkin C A 2000 Science 288 1808Google Scholar
[41] Salaita K, Lee S W, Wang X F, Huang L, Dellinger T M, Liu C, Mirkin C A 2005 Small 1 940Google Scholar
[42] Salaita K, Wang Y, Fragala J, Vega R A, Liu C, Mirkin C A 2006 Angew. Chem. Int. Ed. 45 7220Google Scholar
[43] Hong S H, Zhu J, Mirkin C A 1999 Science 286 523Google Scholar
[44] Huo F W, Zheng Z J, Zheng G F, Giam L R, Zhang H, Mirkin C A 2008 Science 321 1658Google Scholar
[45] Liao X, Braunschweig A B, Mirkin C A 2010 Nano Lett. 10 1335Google Scholar
[46] Noh H, Jung G E, Kim S, Yun S H, Jo A, Kahng S J, Cho N J, Cho S J 2015 Small 11 4526Google Scholar
[47] Wang S, Hosford J, Heath W P, Wong L S 2015 RSC Adv. 5 61402Google Scholar
[48] Xie Z, Shen Y D, Zhou X C, Yang Y, Tang Q, Miao Q, Su J, Wu H K, Zheng Z J 2012 Small 8 2664Google Scholar
[49] Li Y, Maynor B W, Liu J 2001 J. Am. Chem. Soc. 123 2105Google Scholar
[50] Maynor B W, Filocamo S F, Grinstaff M W, Liu J 2002 J. Am. Chem. Soc. 124 522Google Scholar
[51] Xue B, Wang H, Qin M, Cao Y, Wang W 2015 Acta Phys. Sin. 64 098702Google Scholar
[52] Agarwal G, Naik R R, Stone M O 2003 J. Am. Chem. Soc. 125 7408Google Scholar
[53] Carnally S A M, Wong L S 2014 Nanoscale 6 4998Google Scholar
[54] Riemenschneider L, Blank S, Radmacher M 2004 Nano Lett. 5 1643Google Scholar
[55] Luo X, Pedrosa V A, Wang J 2010 Chem. -A Eur. J. 15 5191Google Scholar
[56] Hosford J, Valles M, Krainer F W, Glieder A, Wong L S 2018 Nanoscale 10 7185Google Scholar
[57] Balá P 2003 Int. J. Miner. Process. 72 341Google Scholar
[58] Melville H W, Murray A J R 1950 Transactions of the Faraday Society 46 996Google Scholar
[59] Porter R S, Johnson J F 1959 J. Phys. Chem. 63 202Google Scholar
[60] Keller A, Odell J A 1985 Colloid and Polymer Science 263 181Google Scholar
[61] Odell J A, Keller A 1986 J. Polym. Sci. Pt. B-Polym. Phys. 24 1889Google Scholar
[62] Toda F 1996 Cheminform 27 480Google Scholar
[63] 臧洪俊, 李正名, 王宝雷 2003 有机化学 10 18Google Scholar
Zang H J, Li Z M, Wang B L 2003 Chin. J. Org. Chem. 10 18Google Scholar
[64] 忻新泉, 周益明, 牛云垠 2010 低热固相化学反应 (北京: 高等教育出版社) 第195−197, 206−207页
Xin X Q, Zhou Y M, Niu Y G 2010 Low Temperature Solid Phase Chemical Reaction (Beijing: Higher Education Press) pp195−197, 206−207(in Chinese)
[65] Crossey K, Cunningham R N, Redpath P, Migaud M E 2015 RSC Adv. 5 58116Google Scholar
[66] Kubota K, Pang Y, Miura A, Ito H 2019 Science 366 1500Google Scholar
[67] Yang Z, Yang H J, Yang H S 2018 Food Hydrocoll. 75 164Google Scholar
[68] Wool R P 2006 CR Chim. 9 25Google Scholar
[69] Jenkins A 2004 Contemporary Polymer Chemistry (3rd Ed.) (Upper Saddle River, NJ, USA) ppxviii + 814
[70] Brantley J N, Wiggins K M, Bielawski C W 2013 Poly. Int. 62 2Google Scholar
[71] Wiggins K M, Brantley J N, Bielawski C W 2013 Chem. Soc. Rev. 42 7130Google Scholar
[72] Schoon V T G F, Rieber G 1972 Macromol. Mater. Eng. 23 43Google Scholar
[73] Doulah M S 1978 J. Appl. Polym. Sci. 22 1735Google Scholar
[74] Encina M V, Lissi E, Sarasúa M, Gargallo L, Radic D 1980 J. Poly. Sci. 18 757Google Scholar
[75] Nguyen T Q, Liang Q Z, Kausch H H 1997 Polymer 38 3783Google Scholar
[76] Hickenboth C R, Moore J S, White S R, Sottos N R, Baudry J, Wilson S R 2007 Nature 446 423Google Scholar
[77] Vijayalakshmi S P, Madras G 2005 Polym. Degrad. Stabil. 90 116Google Scholar
[78] Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y 2019 Nat. Chem. 11 310Google Scholar
[79] Zhang W, Zhang X 2003 Prog. Polym. Sci. 28 1271Google Scholar
[80] Beyer M K, Clausen-Schaumann H 2005 Chem. Rev. 105 2921Google Scholar
[81] Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar
[82] Zhou H T, Gao X, Zheng P, Qin M, Cao Y, Wang W 2016 Acta Phys. Sin. 65 188703Google Scholar
[83] Boulatov R 2015 Polymer Mechanochemistry (Switzerland: Springer International Publishing) pp2−12
[84] Piermattei A, Karthikeyan S, Sijbesma R P 2009 Nat. Chem. 1 133Google Scholar
[85] Lenhardt J M, Ong R T, Choe R, Evenhuis R R, Martinez R J, Craig R L 2010 Science 329 1057Google Scholar
[86] Li J, Nagamani C, Moore J S 2015 Accounts Chem. Res. 48 2181Google Scholar
[87] Chen Z X, Mercer J A M, Zhu X L, Romaniuk J A H, Pfattner R, Cegelski L, Martinez T J, Burns N Z, Xia Y 2017 Science 357 475Google Scholar
[88] Garcia-Manyes S, Beedle A E M 2017 Nat. Rev. Chem. 1 16Google Scholar
[89] Yan H, Yang F, Pan D, Lin Y, Hohman J N, Solis-Ibarra D, Li F H, Dahl J E P, Carlson R M K, Tkachenko B A, Fokin A A, Schreiner P R, Galli G, Mao W L, Shen Z X, Melosh N A 2018 Nature 554 505Google Scholar
[90] Wang Y J, Dong X, Tang X Y, Zheng H Y, Li K, Lin X H, Fang L M, Sun G A, Chen X P, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J H, Hensley D K, Cody G D, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. Int. Ed. 58 1468Google Scholar
[91] Sun J M, Dong X, Wang Y J, Li K, Zheng H Y, Wang L J, Cody G D, Tulk C A, Molaison J J, Lin X H, Meng Y F, Jin C Q, Mao H K 2017 Angew. Chem.Int. Ed. 56 6553Google Scholar
[92] Bensimon D, Simon A J, Croquette V V, Bensimon A 1995 Phys. Rev. Lett. 74 4754Google Scholar
[93] Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub H E 2000 Biophys. J. 78 1997Google Scholar
[94] Grandbois M 1999 Science 283 1727Google Scholar
[95] Zou S, Schnherr H, Vancso G J 2005 Angew. Chem. Int. Ed. 44 956Google Scholar
[96] Cao Y I, Hongbin L I 2007 Nat. Mater. 6 109Google Scholar
[97] Ortiz C, Hadziioannou G 1999 Macromolecules 32 780Google Scholar
[98] Senden T J, Meglio J M D, Auroy P 1998 EPJ B 3 211Google Scholar
[99] Serpe M J, Kersey F R, Whitehead J R, Wilson S M, Clark R L, Craig S L 2008 J. Phys. Chem. C 112 19163Google Scholar
[100] Li P F, Yi C, Meng Q, Wei W 2017 Acta Phys. Sin. 66 196201Google Scholar
[101] Liu X, Carbonell C, Braunschweig A B 2016 Chem. Soc. Rev. 45 6289Google Scholar
[102] Bian S, Scott A M, Cao Y, Liang Y, Osuna S, Houk K N, Braunschweig A B 2013 J. Am. Chem. Soc. 135 9240Google Scholar
[103] Han X, Bian S, Liang Y, Houk K N, Braunschweig A B 2014 J. Am. Chem. Soc. 136 10553Google Scholar
[104] Carbonell C, Braunschweig A B 2017 Accounts Chem. Res. 50 190Google Scholar
[105] Liu X, Li Y, Zheng Z 2010 Nanoscale 2 2614Google Scholar
[106] Zhou X C, Wang X L, Shen Y D, Xie Z, Zheng Z J 2011 Angew. Chem. Int. Edit. 50 6506Google Scholar
[107] Chen L, Wei X, Zhou X, Xie Z, Li K, Ruan Q, Chen C, Wang J, Mirkin C A, Zheng Z 2017 Small 13 1702003Google Scholar
[108] Shim W, Braunschweig A B, Liao X, Chai J, Lim J K, Zheng G, Mirkin C A 2011 Nature 469 516Google Scholar
[109] Liao X, Huang Y K, Mirkin C A, Dravid V P 2017 Acs Nano 11 4439Google Scholar
[110] Hasan M N, Lee Y C 2015 Optics Express 23 4494Google Scholar
[111] Xie Z, Gordlichuk P, Lin Q Y, Meckes B, Chen P C, Sun L, Du J S, Zhu J, Liu Y, Dravid V P, Mirkin C A 2017 Acs Nano 11 8231Google Scholar
[112] Mironov A E, Kim J, Huang Y, Steinforth A W, Sievers D J, Eden J G 2020 Nanoscale 12 16796Google Scholar
[113] Hoelz K, Schaudy E, Lietard J, Somoza M M 2019 Nat. Commun. 10 3805Google Scholar
[114] Wang Y, Pan J A, Wu H, Talapin D V 2019 Acs Nano 13 13917Google Scholar
-
图 1 (a) DPN书写示意图, 针尖在吸附大量16-巯基十六烷基酸(16-mercaptohexadecanoic acid, MHA)后, 与金质基底接触, 在探针水平运动的过程中, MHA扩散到金基底上, 迅速与之形成稳定的金-硫键; (b), (c) 由DPN书写得到的纳米图案的LFM图像, 纳米结构的宽度达到100 nm, 且连续书写的长度可达数微米[10]
Figure 1. (a) Schematic diagram of dip-pen nanolithography, AFM tip dipped in thiol solution gets contacted with Au substrate, as the tip is moving horizontally, the small thiol molecules diffuse onto the substrate, then, stabilized gold-sulfur bonds will be formed; (b), (c) lateral force image of a molecule-based grid, each line is 100 nm in width and 2 μm in length. Reproduced with permission[10].
图 4 (a) lipid-DPN效果示意图, 使用磷脂分子作为墨料, 利用其两端的亲疏水性差异, 可以使用DPN书写多层形成堆叠; (b), (c)使用lipid-DPN在氧化石墨烯表面书写磷脂酰胆碱的多层次纳米结构, (b)为其AFM扫描图像, (c)为(b)中标记线部分的高度分布[35]
Figure 4. (a) Schematic presentation of the lipid-DPN, using the differences between hydrophilic and hydrophobic sites of phospholi-pid molecules, it is available to transport multiple phospholipid layers to form stacks; (b) AFM images of L-DPN generated lipid membranes (DOPC) on graphene oxide surfaces in air; (c) AFM height measurements of the same patches measured between the red dots shown in (b)[35].
图 5 (a) t-DPN示意图, 加热悬臂将使粘附在针尖上的固态墨料融化为液态, 在针尖扫描过程中液态墨料留在基底上并冷却沉积; (b) 在云母基底上沉积熔点较高的墨料OPA后的LFM扫描图像, 随着针尖的冷却, 书写得到的OPA纳米线愈发模糊[15]; (c) 对于低熔点的墨料分子MHA, 升高针尖温度将显著增大书写印迹、降低纳米图像的精细度[37]
Figure 5. (a) Schematic illustration of thermal-DPN, heating the cantilever turns adhered solid ink into liquid, then liquid ink is transported onto the substrate and cool back to solid; (b) LFM image of a mica surface scanned with a coated AFM cantilever tip for 60 s in each of three lines, the cantilever is heated for the first line (upper left), then allows to cool during the second two, OPA continues to transfer from the tip onto the surface after the cantilever heater has been turned off, reproduced with permission[15]; (c) LFM image of MHA dot patterns generated via tDPN on a gold substrate at different tip temperatures[37].
图 7 (a) 利用硬质硅模板对PDMS橡胶成型, 只需使用刻蚀工艺打造一块硅模板便可以源源不断的生产PDMS阵列成型; (b) 集成了1100万针尖的一块针尖阵列; (c) SEM扫描到的针尖阵列图像, 单个针尖的直径可达到70 nm[44]
Figure 7. (a) Schematic illustration of the polymer pen preparation; (b) a photograph of an 11-million-pen array; (c) SEM image of the polymer pen array, the average tip radius of curvature is 70 nm[44].
图 9 (a) e-DPN示意图, 外接电源构造针尖与基底的电势差, 利用弯月面内的离子溶液导电, 构建纳米级电化学池; (b) 使用e-DPN书写的铂纳米图案, 书写的宽度可达到30 nm[49]
Figure 9. (a) Schematic diagram of e-DPN, a nano-scale electrochemical cell is set up with conductive tip, substrate, solution meniscus, and external voltage; (b) Pt-nano-image written with e-DPN, width of writing is 30 nm[49].
图 10 基于金属催化反应衍生的DPN体系 (a) Pt催化叠氮分解; (b) Cu催化叠氮与炔的成环点击反应; (c) Pd催化硅氢加成反应[53]; (d) AP酶催化制备的氯化硝基四氮唑蓝纳米图案, 特征直径为150 nm[54]
Figure 10. Schematic illustration of several DPN derivative from mental catalysed reaction: (a) Azide reductions; (b) CuAAC “click” ligations; (c) hydrosilylation[53];(d) AFM topography images showing features consisting of precipitated itro-blue tetrazolium (NBT) following nanolithography with a probe-bound AP enzyme[54].
图 13 马来酰亚胺-巯基合成物的超声拉伸实验示意 (a) 高分子P2, 由4, 4-双马来酰亚胺二苯甲烷分别在两侧连接分子量为5k的巯基末端聚乙二醇链得到, 每个P2分子中部有两个由巯基与马来酰亚胺结合成的硫醚键, AP2为P2接受碱处理后的产物, UP2为P2接受超声拉伸后的混合物; (b) 高分子P2及其分别接受碱处理、超声处理的产物的傅里叶红外光谱对比[78]
Figure 13. Schematic presentation of maleimide–thiol adducts stretched by ultrasonication: (a) P2 is a polymer chain synthesized by treating a thiol-terminated PEG (Mw, 5kDa) with 4, 4′-bis-maleimidodiphenylmethane, the following process is alkaline treatment for AP2 or ultrasonication for UP2; (b) 1 H NMR spectra in dimethyl sulfoxide-d6 (DMSO-d6) of P2, P2 after alkaline treatment (AP2) and P2 after ultrasonication for 30 min (UP2)[78].
图 15 针尖修饰高分子链时, 一个完整的下针、上抬流程 ①自由下针; ②针尖挤压基底, 分子链“自由端”结合到基底上; ③针尖抬离基底, 分子链被拉伸; ④分子链断裂后针尖不受束缚地自由抬起
Figure 15. Schematic presentation of a full circle of cantilever’s trace and retrace driven by AFM. One terminal of the polymer chain is linked on the AFM tip and the other side is “free”: ① Cantilever approaches the substrate; ② tip contacts the substrate and the pressure keeps increasing until it reaches the setpoint. The “free” terminal links to the substrate; ③ as cantilever retracting, polymer chain is stretched and a pulling force is applied to the tip; ④ polymer chain is broken and cantilever leaves the substrate with no bound.
图 16 (a) 使用聚合物笔阵列蘸墨, 将含炔的墨水打印到修饰有叠氮的基板; (b) 在针尖碰撞基底的位置, 机械挤压作用会介导叠氮与炔的合成反应(Huisgen反应), 而未碰撞的位置上则不会发生该反应; (c) 在不同挤压时间及挤压压力下, 力致 PPL加工得到的微纳图案在荧光染色后的图像[103]
Figure 16. Schematic presentation of Alkyne-Azide “printing” by polymer pen nanolithography: (a) Polymer pen arrays are dipped with alkyne solution and substrate is modified with azide molecules; (b) addition reaction can only be triggered by mechanical force, the substrate part away from contact is reaction-forbidden; (c) fluorescent images of 2 × 3 dot arrays of 1 printed at different time (0, 60, 180, 300, 420, 600 s) and pressure (0.29, 0.32, 0.34, 0.37, 0.39, 0.42 MPa)[103].
图 17 (a) DNL流程示意图; (b), (c) DNL制备的MUDBr纳米结构的LFM图像, 前者在边长2 μm的刮擦图像中保持了加工结构的均匀, 后者使用了单次、1000 nN的压力来对每个点位施加机械作用, 得到单点位特征直径仅为25 nm的成规模的纳米点阵[105]
Figure 17. (a) Schematic illustration of the fabrication of polymer brushes by DNL; (b) LFM image of a MUDBr square written by DNL; (c) MUDBr nanodots made by DNL at constant tip-substrate contact force (1000 nN), but different tip-substrate contact time. Each dot is made by indenting the tip onto the MHA-Au one at a time[105]
图 18 (a) 利用DNL制作抗刻蚀的PMMA聚合物刷, 进而刻蚀金纳米点阵的流程示意; (b) 对制成的金纳米结构的AFM扫描图像; (c) 对大规模金纳米结构点阵的SEM扫描图像[107]
Figure 18. (a) Schematic of the fabrication of Au nanostructures by parallel DNL, SI-ATRP, and wet-chemical etching; (b) AFM topography of the resulting Au structures; (c) SEM image of the fabricated Au nanorod arrays[107]
调节变量 拉伸效果变化 增大超声强度 空化效应增强直至达到一个上限, 拉伸效果增强 增大溶剂蒸气压 空化效应受到气蚀缓冲而削弱, 拉伸效果降低 增大溶剂黏度 空化效应削弱, 拉伸效果降低 升高温度 导致溶剂蒸气压增大, 拉伸效果降低 提升聚合物浓度 导致溶剂黏度增大, 拉伸效果降低 表 2 不同DPN衍生技术的加工尺度、技术优势与局限性
Table 2. The fabrication scales, advantages, and limitations among all derivatives of DPN.
纳米加工技术 加工尺度 技术优势 技术局限性 DPN 30—100 nm 快速书写; 高操控性 低通量, 低规模 t-DPN 100 nm—10 μm 可使用常温固态的墨料; 升温加速反应;
加工尺度一定程度上受温度调节墨料易扩散污染基底 Lipid-DPN 200—500 nm 磷脂预自组装可形成多层堆叠的立体结构 较难通过针尖控制纳米结构的形态 e-DPN 30—100 nm 可用于金属离子电镀、局部电改性 针尖电极的产物影响操控性 金属、生物催
化DPN80—150 nm 催化加工生物软材料的纳米结构 硬质陶瓷针尖易对软材料产生机械破坏 p-DPN 40—100 nm 多针尖, 大规模高通量纳米加工 成本昂贵 PPL 200 nm—50 μm 低成本大规模纳米加工 难以对针尖进行化学修饰;
弹性针尖受力大幅形变HSL 50 nm 尖端坚固不形变、精细度较高的大
规模聚合物笔纳米加工针尖制造流程复杂 DNL 25—75 nm 可控高精细度; 无扩散污染; 与三维刻蚀结合 针尖成本高、长时间受大机械力易损耗; 适用的
化学体系不多, 待进一步开发 -
[1] Bouchiat V, Esteve D 1996 Appl. Phys. Lett. 69 3098Google Scholar
[2] He H, Li C, Wang J, Zhang H, Liu Z 1997 Acta Phys.-Chim. Sin. 13 293Google Scholar
[3] Shi J, Chen J, Cremer P S 2008 J. Am. Chem. Soc. 130 2718Google Scholar
[4] Liu G Q, Chen L N, Liu J, Qiu M, Xie Z, Chang J, Zhang Y K, Li P, Lei D Y, Zheng Z J 2018 Adv. Mater. 30 1801772Google Scholar
[5] Xie X N, Deng M, Xu H, Yang S W, Qi D C, Gao X Y, Chung H J, Sow C H, Tan V B C, Wee A T S 2006 J. Am. Chem. Soc. 128 2738Google Scholar
[6] Nie Z, Kumacheva E 2008 Nat. Mater. 7 277Google Scholar
[7] Yan Y, Geng Y, Hu Z 2015 Int. J. Mach. Tool.Manu. 99 1Google Scholar
[8] Jaschke M, Butt H J, Manne S, Gaub H E, Hasemann O, Krimphove F, Wolff E K 1996 Biosens. Bioelectron. 11 601Google Scholar
[9] Jaschke M, Butt H J 1995 Langmuir 11 1061Google Scholar
[10] Piner R D, Zhu J, Xu F, Hong S, Mirkin C A 1999 Science 283 661Google Scholar
[11] Zhang H, Elghanian R, Amro N A, Disawal S, Eby R 2004 Nano Lett. 4 1649Google Scholar
[12] Lu G, Chen Y, Li B, Zhou X, Xue C, Ma J, Boey F Y C, Zhang H 2009 J. Phys. Chem. C 113 4184Google Scholar
[13] Li B, Goh C F, Zhou X, Lu G, Tantang H, Chen Y, Xue C, Boey F Y C, Zhang H 2008 Adv. Mater. 20 4873Google Scholar
[14] Li B, Lu G, Zhou X, Cao X, Zhang H 2009 Langmuir Acs. J. Surf. Coll. 25 10455Google Scholar
[15] Sheehan P, Whitman L, King W, Nelson B 2004 Appl. Phys. Lett. 85 1589Google Scholar
[16] Maynor B W, Li J, Lu C, Liu J 2004 J. Am. Chem. Soc. 126 6409Google Scholar
[17] Wang J, Kouznetsova T B, Craig S L 2015 J. Am. Chem.Soc. 137 11554Google Scholar
[18] Mason T J, Lorimer J P 2002 Appl. Sonochem. 9 885Google Scholar
[19] Dudko O K, Hummer G, Szabo A 2008 Proc. Nat. Aca. USA 105 15755Google Scholar
[20] Wang J, Kouznetsova T B, Niu Z, Ong M T, Klukovich H M, Rheingold A L, Martinez T J, Craig S L 2015 Nat. Chem. 7 323Google Scholar
[21] Akbulatov S, Tian Y, Huang Z, Kucharski T J, Yang Q-Z, Boulatov R 2017 Science 357 299Google Scholar
[22] Brown K A, Eichelsdoerfer D J, Liao X, He S, Mirkin C A 2014 Front. Phys. 9 385Google Scholar
[23] Saha S K, Culpepper M L 2010 J. Phys. Chem. C 114 15364Google Scholar
[24] Urtizberea A, Hirtz M, Fuchs H 2015 Nanofabrication 2 43Google Scholar
[25] Sheehan P E, Whitman L J 2002 Phys. Rev. Lett. 88 156104Google Scholar
[26] Weeks B L, Noy A, Miller A E, De Yoreo J J 2002 Phys. Rev. Lett. 88 255505Google Scholar
[27] Jang J, Schatz G C, Ratner M A 2003 Phys. Rev. Lett. 90 156104Google Scholar
[28] Jang J, Schatz G C, Ratner M A 2004 Phys. Rev. Lett. 92 085504Google Scholar
[29] O’Connell C D, Higgins M J, Marusic D, Moulton S E, Wallace G G 2014 Langmuir Acs.Surf. Coll. 30 2712Google Scholar
[30] Eichelsdoerfer D J, Brown K A, Mirkin C A 2014 Soft Matter. 10 5603Google Scholar
[31] Liu G L, Zhou Y, Banga R S, Boya R, Brown K A, Chipre A J, Nguyen S T, Mirkin C A 2013 Chem. Sci. 4 2093Google Scholar
[32] Hirtz M, Corso R, Sekula-Neuner S, Fuchs H 2011 Langmuir Acs J. Surf. Coll. 27 11605Google Scholar
[33] Hirtz M, Oikonomou A, Georgiou T, Fuchs H, Vijayaraghavan A 2013 Nat. Commun. 4 2591Google Scholar
[34] Gavutis M, Navikas V, Rakickas T, Vaitekonis S, Valiokas R 2016 J. Micromech. Microeng. 26 025016Google Scholar
[35] Willems N, Urtizberea A, Verre A F, Iliut M, Lelimousin M, Hirtz M, Vijayaraghavan A, Sansom M S P 2017 Acs Nano 11 1613Google Scholar
[36] Nelson B A, King W P, Laracuente A R, Sheehan P E, Whitman L J 2006 Appl. Phys. Lett. 88 033104Google Scholar
[37] Chung S, Felts J R, Wang D, King W P, Yoreo J J D 2011 Appl. Phys. Lett. 99 193101Google Scholar
[38] Felts J R, Somnath S, Ewoldt R H, King W P 2012 Nanotechnology 23 215301Google Scholar
[39] Szoszkiewicz R, Okada T, Jones S C, Li T D, King W P, Marder S R, Riedo E 2007 Nano Lett. 7 1064Google Scholar
[40] Hong S H, Mirkin C A 2000 Science 288 1808Google Scholar
[41] Salaita K, Lee S W, Wang X F, Huang L, Dellinger T M, Liu C, Mirkin C A 2005 Small 1 940Google Scholar
[42] Salaita K, Wang Y, Fragala J, Vega R A, Liu C, Mirkin C A 2006 Angew. Chem. Int. Ed. 45 7220Google Scholar
[43] Hong S H, Zhu J, Mirkin C A 1999 Science 286 523Google Scholar
[44] Huo F W, Zheng Z J, Zheng G F, Giam L R, Zhang H, Mirkin C A 2008 Science 321 1658Google Scholar
[45] Liao X, Braunschweig A B, Mirkin C A 2010 Nano Lett. 10 1335Google Scholar
[46] Noh H, Jung G E, Kim S, Yun S H, Jo A, Kahng S J, Cho N J, Cho S J 2015 Small 11 4526Google Scholar
[47] Wang S, Hosford J, Heath W P, Wong L S 2015 RSC Adv. 5 61402Google Scholar
[48] Xie Z, Shen Y D, Zhou X C, Yang Y, Tang Q, Miao Q, Su J, Wu H K, Zheng Z J 2012 Small 8 2664Google Scholar
[49] Li Y, Maynor B W, Liu J 2001 J. Am. Chem. Soc. 123 2105Google Scholar
[50] Maynor B W, Filocamo S F, Grinstaff M W, Liu J 2002 J. Am. Chem. Soc. 124 522Google Scholar
[51] Xue B, Wang H, Qin M, Cao Y, Wang W 2015 Acta Phys. Sin. 64 098702Google Scholar
[52] Agarwal G, Naik R R, Stone M O 2003 J. Am. Chem. Soc. 125 7408Google Scholar
[53] Carnally S A M, Wong L S 2014 Nanoscale 6 4998Google Scholar
[54] Riemenschneider L, Blank S, Radmacher M 2004 Nano Lett. 5 1643Google Scholar
[55] Luo X, Pedrosa V A, Wang J 2010 Chem. -A Eur. J. 15 5191Google Scholar
[56] Hosford J, Valles M, Krainer F W, Glieder A, Wong L S 2018 Nanoscale 10 7185Google Scholar
[57] Balá P 2003 Int. J. Miner. Process. 72 341Google Scholar
[58] Melville H W, Murray A J R 1950 Transactions of the Faraday Society 46 996Google Scholar
[59] Porter R S, Johnson J F 1959 J. Phys. Chem. 63 202Google Scholar
[60] Keller A, Odell J A 1985 Colloid and Polymer Science 263 181Google Scholar
[61] Odell J A, Keller A 1986 J. Polym. Sci. Pt. B-Polym. Phys. 24 1889Google Scholar
[62] Toda F 1996 Cheminform 27 480Google Scholar
[63] 臧洪俊, 李正名, 王宝雷 2003 有机化学 10 18Google Scholar
Zang H J, Li Z M, Wang B L 2003 Chin. J. Org. Chem. 10 18Google Scholar
[64] 忻新泉, 周益明, 牛云垠 2010 低热固相化学反应 (北京: 高等教育出版社) 第195−197, 206−207页
Xin X Q, Zhou Y M, Niu Y G 2010 Low Temperature Solid Phase Chemical Reaction (Beijing: Higher Education Press) pp195−197, 206−207(in Chinese)
[65] Crossey K, Cunningham R N, Redpath P, Migaud M E 2015 RSC Adv. 5 58116Google Scholar
[66] Kubota K, Pang Y, Miura A, Ito H 2019 Science 366 1500Google Scholar
[67] Yang Z, Yang H J, Yang H S 2018 Food Hydrocoll. 75 164Google Scholar
[68] Wool R P 2006 CR Chim. 9 25Google Scholar
[69] Jenkins A 2004 Contemporary Polymer Chemistry (3rd Ed.) (Upper Saddle River, NJ, USA) ppxviii + 814
[70] Brantley J N, Wiggins K M, Bielawski C W 2013 Poly. Int. 62 2Google Scholar
[71] Wiggins K M, Brantley J N, Bielawski C W 2013 Chem. Soc. Rev. 42 7130Google Scholar
[72] Schoon V T G F, Rieber G 1972 Macromol. Mater. Eng. 23 43Google Scholar
[73] Doulah M S 1978 J. Appl. Polym. Sci. 22 1735Google Scholar
[74] Encina M V, Lissi E, Sarasúa M, Gargallo L, Radic D 1980 J. Poly. Sci. 18 757Google Scholar
[75] Nguyen T Q, Liang Q Z, Kausch H H 1997 Polymer 38 3783Google Scholar
[76] Hickenboth C R, Moore J S, White S R, Sottos N R, Baudry J, Wilson S R 2007 Nature 446 423Google Scholar
[77] Vijayalakshmi S P, Madras G 2005 Polym. Degrad. Stabil. 90 116Google Scholar
[78] Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y 2019 Nat. Chem. 11 310Google Scholar
[79] Zhang W, Zhang X 2003 Prog. Polym. Sci. 28 1271Google Scholar
[80] Beyer M K, Clausen-Schaumann H 2005 Chem. Rev. 105 2921Google Scholar
[81] Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar
[82] Zhou H T, Gao X, Zheng P, Qin M, Cao Y, Wang W 2016 Acta Phys. Sin. 65 188703Google Scholar
[83] Boulatov R 2015 Polymer Mechanochemistry (Switzerland: Springer International Publishing) pp2−12
[84] Piermattei A, Karthikeyan S, Sijbesma R P 2009 Nat. Chem. 1 133Google Scholar
[85] Lenhardt J M, Ong R T, Choe R, Evenhuis R R, Martinez R J, Craig R L 2010 Science 329 1057Google Scholar
[86] Li J, Nagamani C, Moore J S 2015 Accounts Chem. Res. 48 2181Google Scholar
[87] Chen Z X, Mercer J A M, Zhu X L, Romaniuk J A H, Pfattner R, Cegelski L, Martinez T J, Burns N Z, Xia Y 2017 Science 357 475Google Scholar
[88] Garcia-Manyes S, Beedle A E M 2017 Nat. Rev. Chem. 1 16Google Scholar
[89] Yan H, Yang F, Pan D, Lin Y, Hohman J N, Solis-Ibarra D, Li F H, Dahl J E P, Carlson R M K, Tkachenko B A, Fokin A A, Schreiner P R, Galli G, Mao W L, Shen Z X, Melosh N A 2018 Nature 554 505Google Scholar
[90] Wang Y J, Dong X, Tang X Y, Zheng H Y, Li K, Lin X H, Fang L M, Sun G A, Chen X P, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J H, Hensley D K, Cody G D, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. Int. Ed. 58 1468Google Scholar
[91] Sun J M, Dong X, Wang Y J, Li K, Zheng H Y, Wang L J, Cody G D, Tulk C A, Molaison J J, Lin X H, Meng Y F, Jin C Q, Mao H K 2017 Angew. Chem.Int. Ed. 56 6553Google Scholar
[92] Bensimon D, Simon A J, Croquette V V, Bensimon A 1995 Phys. Rev. Lett. 74 4754Google Scholar
[93] Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub H E 2000 Biophys. J. 78 1997Google Scholar
[94] Grandbois M 1999 Science 283 1727Google Scholar
[95] Zou S, Schnherr H, Vancso G J 2005 Angew. Chem. Int. Ed. 44 956Google Scholar
[96] Cao Y I, Hongbin L I 2007 Nat. Mater. 6 109Google Scholar
[97] Ortiz C, Hadziioannou G 1999 Macromolecules 32 780Google Scholar
[98] Senden T J, Meglio J M D, Auroy P 1998 EPJ B 3 211Google Scholar
[99] Serpe M J, Kersey F R, Whitehead J R, Wilson S M, Clark R L, Craig S L 2008 J. Phys. Chem. C 112 19163Google Scholar
[100] Li P F, Yi C, Meng Q, Wei W 2017 Acta Phys. Sin. 66 196201Google Scholar
[101] Liu X, Carbonell C, Braunschweig A B 2016 Chem. Soc. Rev. 45 6289Google Scholar
[102] Bian S, Scott A M, Cao Y, Liang Y, Osuna S, Houk K N, Braunschweig A B 2013 J. Am. Chem. Soc. 135 9240Google Scholar
[103] Han X, Bian S, Liang Y, Houk K N, Braunschweig A B 2014 J. Am. Chem. Soc. 136 10553Google Scholar
[104] Carbonell C, Braunschweig A B 2017 Accounts Chem. Res. 50 190Google Scholar
[105] Liu X, Li Y, Zheng Z 2010 Nanoscale 2 2614Google Scholar
[106] Zhou X C, Wang X L, Shen Y D, Xie Z, Zheng Z J 2011 Angew. Chem. Int. Edit. 50 6506Google Scholar
[107] Chen L, Wei X, Zhou X, Xie Z, Li K, Ruan Q, Chen C, Wang J, Mirkin C A, Zheng Z 2017 Small 13 1702003Google Scholar
[108] Shim W, Braunschweig A B, Liao X, Chai J, Lim J K, Zheng G, Mirkin C A 2011 Nature 469 516Google Scholar
[109] Liao X, Huang Y K, Mirkin C A, Dravid V P 2017 Acs Nano 11 4439Google Scholar
[110] Hasan M N, Lee Y C 2015 Optics Express 23 4494Google Scholar
[111] Xie Z, Gordlichuk P, Lin Q Y, Meckes B, Chen P C, Sun L, Du J S, Zhu J, Liu Y, Dravid V P, Mirkin C A 2017 Acs Nano 11 8231Google Scholar
[112] Mironov A E, Kim J, Huang Y, Steinforth A W, Sievers D J, Eden J G 2020 Nanoscale 12 16796Google Scholar
[113] Hoelz K, Schaudy E, Lietard J, Somoza M M 2019 Nat. Commun. 10 3805Google Scholar
[114] Wang Y, Pan J A, Wu H, Talapin D V 2019 Acs Nano 13 13917Google Scholar
Catalog
Metrics
- Abstract views: 9757
- PDF Downloads: 286
- Cited By: 0