-
Graphene has shown the great potential applications in the field of solid lubricants due to its outstanding mechanical properties and chemical inertness. The introduction of interfacial current at the graphene-lubricated surface is expected to tune the lubrication performance of graphene. Here in this work, an atomistic configuration of single-crystal silicon tip sliding against graphene supported by an elastic substrate is constructed to investigate the current-carrying friction behavior of graphene by using molecular dynamics simulations. The effects of applied voltages, normal loads and substrate stiffnesses on the current-carrying friction behavior of graphene are systematically explored. The simulation results show that when the bias voltage is applied to the graphene-based system, the friction force undertaken by the tip is one order of magnitude larger than when applying no bias voltage. The friction increases with the magnitude of bias voltage increasing, but the increasing rate varies in different directions of bias voltage. A similar friction-voltage relationship of graphene under different normal loads and substrate stiffnesses indicates its relatively stable current-carrying friction behavior and the robust current-carrying effect. The increased friction force of graphene after the introduction of interfacial current can be attributed to the expansion of current-carrying region, causing Coulomb interactions instead of van der Waals interactions to dominate the adhesions at the friction interface. Based on the Prandtl-Tomlinson model, the current-carrying friction mechanism of graphene is systematically discussed. It is found that such a friction mechanism is different from the pucker effect of graphene, but follows the energy barrier theory. This work promotes the graphene to be used as the typical solid lubricant under the complex operation conditions with the voltage-induced current going through friction interfaces.
-
Keywords:
- graphene /
- current-carrying friction /
- energy barrier /
- molecular dynamics
[1] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[2] Li S, Li Q, Carpick R W, Gumbsch P, Liu X, Ding X, Sun J, Li J 2016 Nature 539 541Google Scholar
[3] Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar
[4] Filleter T, McChesney J L, Bostwick A, et al. 2009 Phys. Rev. Lett. 102 1Google Scholar
[5] Ding T, Chen G, Li Y, Yang H, He Q 2014 Tribol. Int. 79 8Google Scholar
[6] Yasar I, Canakci A, Arslan F 2007 Tribol. Int. 40 1381Google Scholar
[7] 沈向前, 孙乐民, 张永振 2006 润滑与密封 1 72Google Scholar
Shen X, Sun L, Zhang Y 2006 Lubr. Eng. 1 72Google Scholar
[8] 王一帆 2015 硕士毕业论文 (洛阳: 河南科技大学)
Wang Y 2015 M. S. Thesis (Luoyang: Henan University of Science and Technology) (in Chinese)
[9] 谢博华, 鞠鹏飞, 吉利, 李红轩, 周惠娣, 陈建敏 2019 摩擦学学报 39 656Google Scholar
Xie B, Ju P, Ji L, Li H, Zhou H, Chen J 2019 Tribology 39 656Google Scholar
[10] Jiang Y, Li Y, Liang B, Yang X, Han T, Wang Z 2012 Nanotechnology 23 495703Google Scholar
[11] Berman D, Erdemir A, Sumant A V 2014 Appl. Phys. Lett. 105 231907Google Scholar
[12] Lee J, Hu X, Voevodin A, Martini A, Berman D 2018 Micromachines 9 1Google Scholar
[13] Chang T, Zhang H, Guo Z, Guo Z, Gao H 2015 Phys. Rev. Lett. 114 1Google Scholar
[14] Peng Y, Li J, Tang X, Liu B, Chen X, Bai L 2020 Tribol. Lett. 68 1Google Scholar
[15] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[16] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[17] Srinivasan S G, Duin A C, Ganesh P 2015 J. Phys. Chem. A. 119 571Google Scholar
[18] Liu J, Qi Y, Li Q, Duan T, Yue W, Vadakkepatt A, Ye C, Dong Y 2019 Carbon 142 363Google Scholar
[19] Lang H, Peng Y, Cao X, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar
[20] Deng Z, Smolyanitsky A, Li Q, Feng X, Cannara R J 2012 Nat. Mater. 11 1032Google Scholar
[21] Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar
[22] Bagheri S, Mansouri N, Aghaie E 2016 Int. J. Hydrogen Energy. 41 4085Google Scholar
[23] Zhang H, Guo Z, Gao H, Chang T 2015 Carbon 94 60Google Scholar
[24] Li J, Peng Y, Tang X, Tang X, Xu Q, Liu B, Bai L 2021 Tribol. Lett. 69 1Google Scholar
[25] Sun K, Fan X, Zhang W, Xue P, Diao D 2019 Carbon 149 45Google Scholar
[26] 董霖, 陈光雄, 周仲荣 2009 润滑与密封 34 102Google Scholar
Dong L, Chen G, Zhou Z 2009 Lubr. Eng. 34 102Google Scholar
[27] Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L 2015 Comput. Mater. Sci. 108 160Google Scholar
[28] Tomlinson G A 1929 Philos. Mag. 7 905Google Scholar
[29] Li J, Peng Y, Tang X, Xu Q, Bai L 2021 Phys. Chem. Chem. Phys. 23 4988Google Scholar
[30] Matsuda K, Hashimoto D, Nakamura K 2016 Tribol. Int. 93 523Google Scholar
[31] Mandelli D, Leven I, Hod O, Urbakh M 2017 Sci. Rep. 7 1Google Scholar
-
表 1 石墨烯的接触和载流半径
Table 1. Contact and current-carrying radius of graphene
正偏压 负偏压 无偏压 接触半径/Å 12.0 11.5 10.2 载流半径/Å 8.4 9.6 — -
[1] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[2] Li S, Li Q, Carpick R W, Gumbsch P, Liu X, Ding X, Sun J, Li J 2016 Nature 539 541Google Scholar
[3] Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar
[4] Filleter T, McChesney J L, Bostwick A, et al. 2009 Phys. Rev. Lett. 102 1Google Scholar
[5] Ding T, Chen G, Li Y, Yang H, He Q 2014 Tribol. Int. 79 8Google Scholar
[6] Yasar I, Canakci A, Arslan F 2007 Tribol. Int. 40 1381Google Scholar
[7] 沈向前, 孙乐民, 张永振 2006 润滑与密封 1 72Google Scholar
Shen X, Sun L, Zhang Y 2006 Lubr. Eng. 1 72Google Scholar
[8] 王一帆 2015 硕士毕业论文 (洛阳: 河南科技大学)
Wang Y 2015 M. S. Thesis (Luoyang: Henan University of Science and Technology) (in Chinese)
[9] 谢博华, 鞠鹏飞, 吉利, 李红轩, 周惠娣, 陈建敏 2019 摩擦学学报 39 656Google Scholar
Xie B, Ju P, Ji L, Li H, Zhou H, Chen J 2019 Tribology 39 656Google Scholar
[10] Jiang Y, Li Y, Liang B, Yang X, Han T, Wang Z 2012 Nanotechnology 23 495703Google Scholar
[11] Berman D, Erdemir A, Sumant A V 2014 Appl. Phys. Lett. 105 231907Google Scholar
[12] Lee J, Hu X, Voevodin A, Martini A, Berman D 2018 Micromachines 9 1Google Scholar
[13] Chang T, Zhang H, Guo Z, Guo Z, Gao H 2015 Phys. Rev. Lett. 114 1Google Scholar
[14] Peng Y, Li J, Tang X, Liu B, Chen X, Bai L 2020 Tribol. Lett. 68 1Google Scholar
[15] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[16] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[17] Srinivasan S G, Duin A C, Ganesh P 2015 J. Phys. Chem. A. 119 571Google Scholar
[18] Liu J, Qi Y, Li Q, Duan T, Yue W, Vadakkepatt A, Ye C, Dong Y 2019 Carbon 142 363Google Scholar
[19] Lang H, Peng Y, Cao X, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar
[20] Deng Z, Smolyanitsky A, Li Q, Feng X, Cannara R J 2012 Nat. Mater. 11 1032Google Scholar
[21] Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar
[22] Bagheri S, Mansouri N, Aghaie E 2016 Int. J. Hydrogen Energy. 41 4085Google Scholar
[23] Zhang H, Guo Z, Gao H, Chang T 2015 Carbon 94 60Google Scholar
[24] Li J, Peng Y, Tang X, Tang X, Xu Q, Liu B, Bai L 2021 Tribol. Lett. 69 1Google Scholar
[25] Sun K, Fan X, Zhang W, Xue P, Diao D 2019 Carbon 149 45Google Scholar
[26] 董霖, 陈光雄, 周仲荣 2009 润滑与密封 34 102Google Scholar
Dong L, Chen G, Zhou Z 2009 Lubr. Eng. 34 102Google Scholar
[27] Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L 2015 Comput. Mater. Sci. 108 160Google Scholar
[28] Tomlinson G A 1929 Philos. Mag. 7 905Google Scholar
[29] Li J, Peng Y, Tang X, Xu Q, Bai L 2021 Phys. Chem. Chem. Phys. 23 4988Google Scholar
[30] Matsuda K, Hashimoto D, Nakamura K 2016 Tribol. Int. 93 523Google Scholar
[31] Mandelli D, Leven I, Hod O, Urbakh M 2017 Sci. Rep. 7 1Google Scholar
Catalog
Metrics
- Abstract views: 4741
- PDF Downloads: 112
- Cited By: 0