Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction

Li Lei Zhi Yu-Song Zhang Mao-Lin Liu Zeng Zhang Shao-Hui Ma Wan-Yu Xu Qiang Shen Gao-Hui Wang Xia Guo Yu-Feng Tang Wei-Hua

Citation:

Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction

Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua
PDF
HTML
Get Citation
  • The deep-ultraviolet (DUV) photodetectors (PDs) have important applications in lots of fields. Thus, developing self-powered DUV PDs and excavating the inherent mechanism seem seriously crucial to achieving further actual applications. The construction of heterojunction can lead to many desired characteristics in optoelectronic devices. In the field of DUV photodetection, Ga2O3 has been a popular subject for constructing DUV PDs. So, it is necessary to develop self-powered Ga2O3-based DUV PDs through fabricating its heterogeneous structure. Therefore, in this work, the Ga2O3/Al0.1Ga0.9N heterojunction DUV PD is fabricated and discussed, which can achieve 254 and 365 nm DUV light photodetection. At positive voltages and negative voltages, the heterojunction PD can operate in a photoconductive mode or a depletion mode, respectively. In view of the PD performance, it displays decent dark current and DUV photoresponses. At voltage of 5 and –5 V, under 254 nm DUV light illumination, the photoresponsivity (R) is 2.09 and 66.32 mA/W, respectively, while under 365 nm DUV light illumination, R is 0.22 and 34.75 mA/W, respectively. In addition, under the built-in electric field (Ebuilt-in), R is 0.13 and 0.01 mA/W for 254 nm and 365 nm DUV light illumination, respectively. In all, the fabricated heterojunction PD displays promising prospects in the coming next-generation semiconductor photodetection technology. The results in this work indicate the potential of Ga2O3/Al0.1Ga0.9N heterojunction with high performance DUV photodetection. Furthermore, except for the characterizations of the materials and photodetector, in the end of this paper, the operating mechanism of the dual-band dual-mode heterojunction PD is analyzed through its heterogeneous energy-band diagram. It is concluded that the illustrated dual-band dual-mode Ga2O3/Al0.1Ga0.9N heterojunction can be sensitive to UVA waveband and UVC waveband in the electromagnetic spectrum, extending its photodetection region. And, the dual-mode (photoconductive mode and depletion mode) photodetection indicates two kinds of carrier transports in one PD, which can be attributed to the successful construction of the N-N tomo-type Ga2O3/Al0.1Ga0.9N heterojunction.
      Corresponding author: Liu Zeng, zengliu@njupt.edu.cn ; Zhang Shao-Hui, shzhang2016@sinano.ac.cn ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62204125), the Natural Science Research Starting Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications, China (Grant Nos. XK1060921115, XK1060921002), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123388), and the Scientific and Technological Innovation Programs of Higher Education Institutes of Shanxi Province, China (Grant No. 2021L588).
    [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar

    [3]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [4]

    Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [5]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [6]

    Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar

    [7]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar

    [10]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [11]

    Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar

    [12]

    Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar

    [13]

    Kroemer H 1963 Proc. IEEE 51 1782Google Scholar

    [14]

    Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar

    [15]

    Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar

    [16]

    Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar

    [17]

    Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar

    [18]

    Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar

    [19]

    Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar

    [20]

    Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar

    [21]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [22]

    Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar

    [23]

    Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar

    [24]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar

    [25]

    王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar

    Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar

    [26]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [27]

    Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [28]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [29]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [30]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [31]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [32]

    Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar

    [33]

    Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar

    [34]

    Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar

  • 图 1  Ga2O3/Al0.1Ga0.9 N异质结 (a) X射线衍射图谱; (b) 相应的紫外光电探测器结构示意图

    Figure 1.  (a) The XRD pattern of the Ga2O3/Al0.1Ga0.9N heterojunction, and (b) its schematic diagram of the UV photodetector.

    图 2  (a) Al0.1Ga0.9N薄膜和 (b) Ga2O3薄膜的紫外-可见光吸收光谱, 相应的内插图分别为 (αhv)2与(hv)的函数关系曲线

    Figure 2.  UV-vis absorbance spectrum of the (a) Al0.1Ga0.9N and (b) Ga2O3 thin films. The corresponding insets are the functions of (αhv)2 versus hv, respectively.

    图 3  Ga2O3/Al0.1Ga0.9N异质结光电探测器的对数形式的I-V特性曲线 (a) 暗条件与254 nm波长紫外光辐照; (b) 暗条件与365 nm波长紫外光辐照

    Figure 3.  The semi-log I-V curves of the Ga2O3/Al0.1Ga0.9N heterojunction photodetector: (a) In the dark under 254 nm light illumination; (b) in the dark and under 365 nm light illumination.

    图 4  零偏压下 (a) 254 nm波长紫外光照射下的对数I-t特性曲线; (b) 365 nm波长紫外光照射下的对数I-t特性曲线

    Figure 4.  The I-t curves under (a) 254 nm and (b) 365 nm light illumination at zero bias.

    图 5  (a) 正向偏压下、(b) 反向偏压下254 nm波长光辐照下的I-t特性曲线; (c) 正向偏压下、(d) 反向偏压下365 nm波长光辐照下的I-t特性曲线

    Figure 5.  The I-t curves at (a) positive voltages and (b) negative voltages under the illuminations of 254 nm UV light. The I-t curvesat (c) positive voltages and (d) negative voltages under the illuminations of 365 nm UV light

    图 6  254 nm波长紫外光辐照下, 施加 (a) 正向偏压与 (b) 负偏压下的光电流与光强的关系图. 365 nm波长紫外光辐照下, 施加 (c) 正向偏压与 (d) 负偏压下的光电流与光强的关系图

    Figure 6.  The intensity dependent photocurrent at (a) positive voltages and (b) negative voltages under illumination of 254 nm UV light. The intensity dependent photocurrent at (c) positive voltages and (d) negative voltages under illumination of 365 nm UV light.

    图 7  Ga2O3/Al0.1Ga0.9N异质结能带结构示意图

    Figure 7.  The band diagram of the Ga2O3/Al0.1Ga0.9N heterojunction photodetector.

    表 1  双波段、双模式Ga2O3/Al0.1Ga0.9N异质结光电探测器的性能总结

    Table 1.  Summary on the performance of the dual-band, dual-mode heterojunction photodetector.

    波长254 nm波长365 nm
    偏压/VR /(mA·W–1)D*/JonesEQE /%R /(mA·W–1)D*/JonesEQE/%
    –52.091.60 $ \times $ 10111.010.221.69 $ \times $ 10100.075
    –42.021.80 $ \times $ 10110.970.161.44 $ \times $ 10100.055
    –31.171.92 $ \times $ 10110.840.131.39 $ \times $ 10100.044
    –21.493.00 $ \times $ 10110.720.102.02 $ \times $ 10100.034
    –11.161.52 $ \times $ 10110.660.079.53 $ \times $ 1090.025
    00.139.37 $ \times $ 1090.060.016.18 $ \times $ 1080.003
    18.474.48 $ \times $ 10114.070.884.68 $ \times $ 10100.300
    219.287.92 $ \times $ 10129.252.088.54 $ \times $ 10100.707
    333.811.06 $ \times $ 101216.235.321.66 $ \times $ 10111.808
    449.621.25 $ \times $ 101223.9814.243.56 $ \times $ 10114.841
    566.321.41 $ \times $ 101231.8434.757.42 $ \times $ 101111.815
    DownLoad: CSV
  • [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Shi L, Nihtianov S 2012 IEEE Sensors J. 12 2453Google Scholar

    [3]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [4]

    Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [5]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [6]

    Higashiwaki M 2021 Phys. Status Solidi RRL 15 2100357Google Scholar

    [7]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T, Zhang W 2022 Adv. Opt. Mater. 10 2102055Google Scholar

    [10]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [11]

    Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y, Tang W 2022 IEEE Trans. Electron Devices 69 5595Google Scholar

    [12]

    Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y, Tang W 2022 Chin. Phys. B 31 088503Google Scholar

    [13]

    Kroemer H 1963 Proc. IEEE 51 1782Google Scholar

    [14]

    Robertson J 2000 J. Vac. Sci. Technol., B 18 1785Google Scholar

    [15]

    Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P, Tang W 2019 J. Appl. Phys. 126 045707Google Scholar

    [16]

    Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan C 2022 Nano Lett. 22 4888Google Scholar

    [17]

    Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P, Tang W 2021 J. Phys. D: Appl. Phys. 54 195104Google Scholar

    [18]

    Qi X, Yue J, Ji X, Liu Z, Li S, Yan Z, Zhang M, Yang L, Li P, Guo D, Guo Y, Tang W 2022 Thin Solid Films 757 139397Google Scholar

    [19]

    Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C 2022 Opt. Express 30 21822Google Scholar

    [20]

    Gao A, Jiang W, Ma G, Liu Z, Li S, Yan Z, Sun W, Zhang S, Tang W 2022 Curr. Appl. Phys. 33 20Google Scholar

    [21]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [22]

    Sun W, Sun B, Li S, Ma G, Gao A, Jiang W, Zhang M, Li P, Liu Z, Tang W 2022 Chin. Phys. B 31 024205Google Scholar

    [23]

    Nakagomi S, Sato T, Takahashi Y, Kokubun Y 2015 Sens. Actuators, A 232 208Google Scholar

    [24]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sensors J. 11 1491Google Scholar

    [25]

    王兰喜, 陈学康, 王瑞, 曹生珠 2009 真空与低温 15 5Google Scholar

    Wang L X, Chen X K, Wang D, Cao S Z 2009 Vac. Cryogenics 15 5Google Scholar

    [26]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [27]

    Tung R T 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [28]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [29]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [30]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [31]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [32]

    Garrido J A, Monroy E, Izpura I, Muñoz E 1998 Semicond. Sci. Technol. 13 563Google Scholar

    [33]

    Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O, Stutzmann M 2001 Appl. Phys. Lett. 78 2503Google Scholar

    [34]

    Ma J, Zheng M, Chen C, Zhu Z, Zheng X, Chen Z, Guo Y, Liu C, Yan Y, Fang G 2018 Adv. Funct. Mater. 28 1804128Google Scholar

  • [1] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] Yi Zi-Qi, Wang Yan-Ming, Wang Shuo, Sui Xue, Shi Jia-Hui, Yang Yi-Han, Wang De-Yu, Feng Qiu-Ju, Sun Jing-Chang, Liang Hong-Wei. Performance of UV photodetector of mechanical exfoliation prepared PEDOT:PSS/β-Ga2O3 microsheet heterojunction. Acta Physica Sinica, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] Zhang Sheng-Yuan, Xia Kang-Long, Zhang Mao-Lin, Bian Ang, Liu Zeng, Guo Yu-Feng, Tang Wei-Hua. Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction. Acta Physica Sinica, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [4] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] Ning Ren-Xia, Huang Wang, Wang Fei, Sun Jian, Jiao Zheng. Electromagnetic induction-like transparency in dual-band with dual-bright mode coupling. Acta Physica Sinica, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [7] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [8] Guo Yue, Sun Yi-Ming, Song Wei-Dong. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction. Acta Physica Sinica, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [9] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [10] Dual band Analog - Electromagnetic Induced Transparency of Bright-Bright Mode Coupling on Metamaterial. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211312
    [11] Yang Peng, Han Tian-Cheng. Polarization-controlled dual-band broadband infrared absorber. Acta Physica Sinica, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [12] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [13] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [14] Huo Yong-Heng, Ma Wen-Quan, Zhang Yan-Hua, Huang Jian-Liang, Wei Yang, Cui Kai, Chen Liang-Hui. Dual-band quantum well infrared photodetectors with two ohmic contacts. Acta Physica Sinica, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [15] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING. RESEARCH ON THE DYNAMICAL BEHAVIORS OF GaAs/AlGaAs HETEROSTRUCTURES. Acta Physica Sinica, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
Metrics
  • Abstract views:  4952
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2022
  • Accepted Date:  26 September 2022
  • Available Online:  19 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回