-
Ultrawide-bandgap (4.9 eV) β-Ga2O3 material possesses exceptional properties such as a high critical-breakdown field (~8 MV/cm) and robust chemical and thermal stability. However, due to the challenges in the growth of p-type β-Ga2O3, the preparation of homojunction devices is difficult. Therefore, the utilization of heterojunctions based on β-Ga2O3 provides a viable approach for fabricating ultraviolet photodetectors. Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS), a p-type organic polymer material, exhibits high transparency in a 250–700 nm wavelength range. Additionally, its remarkable conductivity (>1000 S/cm), high hole mobility (1.7 cm2·V–1·s–1), and excellent chemical stability make it an outstanding candidate for serving as a hole transport layer. Consequently, the combination of p-type PEDOT:PSS with n-type β-Ga2O3 in a heterojunction configuration provides a promising way for developing PN junction optoelectronic devices. In this study, a β-Ga2O3 microsheet with dimensions: 4 mm in length, 500 μm in width, and 57 μm in thickness, is successfully exfoliated from a β-Ga2O3 single crystal substrate by using a mechanical exfoliation technique. Subsequently, a PEDOT:PSS/β-Ga2O3 organic/inorganic p-n heterojunction UV photodetector is fabricated by depositing the PEDOT:PSS organic material onto a side of the β-Ga2O3 microsheet. The obtained device exhibits typical rectification characteristics, sensitivity to 254 nm ultraviolet light, and impressive self-powering performance. Furthermore, the heterojunction photodetector demonstrates exceptional photosensitive properties, achieving a responsivity of 7.13 A/W and an external quantum efficiency of 3484% under 254 nm UV light illumination (16 μW/cm2) at 0 V. Additionally, the device exhibits a rapid photoresponse time of 0.25 s/0.20 s and maintains good stability and repeatability over time. Notably, after a three-month duration, the photodetection performance for 254 nm UV light detection remained unchanged, without any significant degradation. This in-depth research provides a novel perspective and theoretical foundation for developing innovative UV detectors and paving the way for future advancements in the field of optoelectronics. -
Keywords:
- β-Ga2O3 /
- PEDOT:PSS /
- heterojunction /
- UV photodetector
[1] Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar
[2] Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar
[3] Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar
[4] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[5] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar
[6] Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar
[7] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[8] Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar
[9] Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[10] Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar
[11] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 物理学报 72 198503Google Scholar
Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar
[12] Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar
[13] Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar
[14] Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar
[15] Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar
[16] Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar
[17] Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar
[18] Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar
[19] Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[20] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar
Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar
[21] Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar
[22] Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar
[23] Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar
[24] Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar
[27] Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar
[28] Ouyang J Y 2013 Displays 34 423Google Scholar
[29] Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar
-
表 1 自供电型无机/有机日盲紫外探测器的性能参数比较
Table 1. Performance comparison of inorganic/organic self-powered solar blind UV detectors.
Structure R/(mA·W–1) Light intensity/(μW·cm–2) Rise/decay time EQE/% Ref. PEDOT:PSS/Ga2O3 microwire 3.25×103 16 0.25 s/0.20 s 1591 This work Ppy-PEDOT:PSS/GaN 1.1×103 6.56×103 0.25 s/0.28 s 4.0×105 [23] Ga2O3/spiro-OMeTAD 65 1 2.98 μs/28.49 μs 32 [24] PEDOT:PSS/Ga2O3 (Bulk) 37 1.5×10–3 9 ms/9 ms 18 [25] PEDOT:PSS/Ga2O3/Si 29 12 60 ms/88 ms 15 [26] ZnO/PVK/PEDOT/CNT 9.96 210 1.5 s/6 s ~0.6 [27] -
[1] Zhang C X, Xu C B, Wen G J, Lian Y F 2018 Opt. Eng. 57 053109Google Scholar
[2] Guo D K, Chen K, Wang S L, Wu F M, Liu A P, Li C R, Li P G, Tan C K, Tang W H 2020 Phys. Rev. Appl. 13 024051Google Scholar
[3] Wu C, He C R, Guo D K, Zhang F B, Li P G, Wang S L, Liu A P, Wu F M, Tang W H 2020 Mater. Today Phys. 12 100193Google Scholar
[4] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[5] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X, Shen D Z 2014 Appl. Phys. Lett. 105 011117Google Scholar
[6] Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424Google Scholar
[7] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[8] Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S, Nath D N 2017 Appl. Phys. 121 164502Google Scholar
[9] Pearton S J, Yang J C, IV P H C, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[10] Jubu P R, Yam F K 2020 Sens. Actuators A 312 112141Google Scholar
[11] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟 2023 物理学报 72 198503Google Scholar
Liu W, Feng Q J, Yi Z Q, Yu C, Wang S, Wang Y M, Sui X, Liang H W 2023 Acta Phys. Sin. 72 198503Google Scholar
[12] Zhou Y M, Mei S J, Sun D W, Liu N, Shi W X, Feng J H, Mei F, Xu J X, Jiang Y, Cao X N 2019 Micromachines 10 459Google Scholar
[13] Feng Q, Du K, Li Y K, Shi P, Feng Q 2014 Chin. Phys. B 23 077303Google Scholar
[14] Liu Z Y, Khaled P, Li R J, Dong R H, Feng X L, Klaus M 2015 Adv. Mater. 27 669Google Scholar
[15] Son J, Kwon Y, Kim J, Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148Google Scholar
[16] Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar
[17] Feng Q J, Dong Z J, Liu W, Liang S, Yi Z Q, Yu C, Xie J Z, Song Z 2022 Micro Nanostruct. 167 207255Google Scholar
[18] Xu C X, Shen L Y, Liu H, Pan X H, Ye Z Z 2021 J. Electron. Mater. 50 2043Google Scholar
[19] Liu Z, Wang X, Liu Y Y, Guo D K, Li S, Yan Z Y, Tan C K, Li W J, Li P G, Tang W H 2019 J. Mater. Chem. C 7 13920Google Scholar
[20] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar
Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar
[21] Lin R C, Zheng W, Zhang D, Zhang Z J, Liao Q X, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar
[22] Qi S, Liu J H, Yue J Y, Ji X Q, Shen J Y, Yang Y T, Wang J J, Li S, Wu Z P, Tang W H 2023 J. Mater. Chem. C 11 8454Google Scholar
[23] Pasupuleti K S, Reddeppa M, Park B G, Peta K R, Oh J E, Kim S G, Kim M D 2020 ACS Appl. Mater. Interfaces 12 54181Google Scholar
[24] Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar
[25] Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar
[26] Zhang D, Zheng W, Lin R C, Li Y Q, Huang F 2019 Adv. Funct. Mater. 29 1900935Google Scholar
[27] Dong Y H, Zou Y S, Song J Z, Zhu Z F, Li J H, Zeng H B 2016 Nano Energy 30 173Google Scholar
[28] Ouyang J Y 2013 Displays 34 423Google Scholar
[29] Yu P P, Hu K, Chen H Y, Zheng L X, Fang X S 2017 Adv. Funct. Mater. 27 1703166Google Scholar
Catalog
Metrics
- Abstract views: 2265
- PDF Downloads: 42
- Cited By: 0