-
Gallium oxide is a new generation of wide band gap materials, and its device has excellent performance. The barrier control of Ga2O3 Schottky diode by n+ high concentration epitaxial thin layer is studied. The results show that the performance of Schottky diode has greatly improved after epitaxy of n-type gallium oxide. The vertical current density is 496.88A·cm–2, the reverse breakdown voltage is 182.30 V, and the calculated Ron is 0.27 mΩ·cm2 when the epitaxial concentration is 2.6 × 1018 cm–3 and the thickness is 5 nm. Further studies indicate that the current density increases with the increase of the layer thickness and the concentration. Theoretical analysis shows that the barrier is controlled by mirror force, series resistance and tunnel effect. Of them, the tunnel effect has the greatest influence, which makes the barrier height decrease with the layer concentration as
$\sqrt {{n}}$ and the thickness as$\sqrt {{a}}$ . As a result, the hot emission current and the tunnel current increase simultaneously, which improves the performance of Ga2O3 Schottky diode.-
Keywords:
- gallium oxide /
- schottky diode /
- effective barrier /
- tunnel current
[1] Singh M, Casbon M A, Uren M J, et al. 2018 IEEE Electron Device Lett. 10 1572Google Scholar
[2] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Spinger Press)
[3] Sasaki K, Kuramata A, Masui T, Víllora E G, Shimamura K, Yamakoshi S 2012 Appl. Phys. Express 5 035502Google Scholar
[4] Oh S, Yang G, Kim J 2017 ECS J. Solid State Sci. 6 Q3022Google Scholar
[5] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506Google Scholar
[6] Yang J, Ahn S, Ren F, Pearton S J, Kuramata A 2017 Appl. Phys. Lett. 110 030101Google Scholar
[7] Hu Z, Hong Z, Dang K, Cai Y, Yue H 2018 IEEE J. Electron Devi. 6 1Google Scholar
[8] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[9] Splith D, Müller S, Schmidt F, et al. 2014 Phys. Status Solidi A 211 40Google Scholar
[10] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar
[11] Hlzl J, Schulte F K 1979 Springer Tr. Mod. Phys. 85 1Google Scholar
[12] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R 2011 J. Appl. Phys. 110 A316Google Scholar
[13] Mohamed M, Janowitz C, Unger I, et al. 2010 Appl. Phys. Lett. 97 081906Google Scholar
[14] Rubio A, Corkill J L, Cohen M L, Shirley E L, Louie S G 1993 Phys. Rev. B 48 11810Google Scholar
[15] He H, Blanco M A, Pandey R 2006 Appl. Phys. Lett. 88 261904Google Scholar
[16] Cheng T, Jie S, Na L, Jia Z, Mu W, Tao X, Xian Z 2016 Rsc Adv. 6 78322Google Scholar
[17] 汤晓燕, 张义门, 张玉明, 郭辉, 张林 2006 半导体学报 27 174Google Scholar
Tang X Y, Zhang Y M, Zhang Y M, Guo H, Zhang L 2006 J. Semicond. 27 174Google Scholar
[18] Chabak K D, Moser N, Green A J, Walker D E, Jessen. G 2018 Appl. Phys. Lett. 109 213501Google Scholar
-
图 3 考虑隧穿效应, 在2.6 × 1018 cm–3浓度下, n+层厚度对正向特性的影响 (a)正向I-V曲线; (b) 0.8 V正向偏置时, 电流密度与n+层厚度的关系; (c)导通电阻与n+层厚度的关系; (d)有效势垒高度和理想因子与n+层厚度的关系
Figure 3. Considering the tunnel effect, influence of n+ layer thickness on forward characteristic with concentration 2.6 × 1018 cm–3: (a) Forward I-V curve; (b) relationship between current density and the thickness at 0.8 V forward bias; (c) relationship between Ron and the thickness; (d) relationship of effective barrier height and ideal factor to the thickness.
图 4 考虑隧穿效应, 在厚度为5 nm时, n+层浓度对正向特性的影响 (a)正向I-V曲线; (b) 0.8 V正向偏置时, 电流密度与n+层浓度的关系; (c)导通电阻与n+层浓度的关系; (d)有效势垒高度和理想因子与n+层浓度的关系
Figure 4. Considering the tunnel effect, the influence of n+ layer concentration on the forward characteristic with 5 nm thickness: (a) Forward I-V curves; (b) relationship between current density and the concentration at 0.8 V forward bias; (c) relationship between Ron and the concentration; (d) relationship of effective barrier height and ideal factor to the concentration.
表 1 按照热电子发射理论计算的参数
Table 1. Parameters calculated according to hot electron emission theory
势垒高度/eV 理想因子n 开启电压/V Ron/
(mΩ·cm2)0.8 V电流密度/(A·cm–2) 击穿电压/V 类型 1.08 1.06 0.76 88.50 2.34 — I: 无外延层+无隧穿效应 1.07 1.10 0.75 31.10 3.62 187.61 II: 无外延层+有隧穿效应 1.02 1.02 0.76 18.25 14.05 — III: 有外延层+无隧穿效应 0.93 1.07 0.76 0.27 496.88 182.30 IV: 有外延层+有隧穿效应 -
[1] Singh M, Casbon M A, Uren M J, et al. 2018 IEEE Electron Device Lett. 10 1572Google Scholar
[2] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Spinger Press)
[3] Sasaki K, Kuramata A, Masui T, Víllora E G, Shimamura K, Yamakoshi S 2012 Appl. Phys. Express 5 035502Google Scholar
[4] Oh S, Yang G, Kim J 2017 ECS J. Solid State Sci. 6 Q3022Google Scholar
[5] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506Google Scholar
[6] Yang J, Ahn S, Ren F, Pearton S J, Kuramata A 2017 Appl. Phys. Lett. 110 030101Google Scholar
[7] Hu Z, Hong Z, Dang K, Cai Y, Yue H 2018 IEEE J. Electron Devi. 6 1Google Scholar
[8] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[9] Splith D, Müller S, Schmidt F, et al. 2014 Phys. Status Solidi A 211 40Google Scholar
[10] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar
[11] Hlzl J, Schulte F K 1979 Springer Tr. Mod. Phys. 85 1Google Scholar
[12] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R 2011 J. Appl. Phys. 110 A316Google Scholar
[13] Mohamed M, Janowitz C, Unger I, et al. 2010 Appl. Phys. Lett. 97 081906Google Scholar
[14] Rubio A, Corkill J L, Cohen M L, Shirley E L, Louie S G 1993 Phys. Rev. B 48 11810Google Scholar
[15] He H, Blanco M A, Pandey R 2006 Appl. Phys. Lett. 88 261904Google Scholar
[16] Cheng T, Jie S, Na L, Jia Z, Mu W, Tao X, Xian Z 2016 Rsc Adv. 6 78322Google Scholar
[17] 汤晓燕, 张义门, 张玉明, 郭辉, 张林 2006 半导体学报 27 174Google Scholar
Tang X Y, Zhang Y M, Zhang Y M, Guo H, Zhang L 2006 J. Semicond. 27 174Google Scholar
[18] Chabak K D, Moser N, Green A J, Walker D E, Jessen. G 2018 Appl. Phys. Lett. 109 213501Google Scholar
Catalog
Metrics
- Abstract views: 6113
- PDF Downloads: 220
- Cited By: 0