Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

Song Jian-Jun Zhang Long-Qiang Chen Lei Zhou Liang Sun Lei Lan Jun-Feng Xi Chu-Hao Li Jia-Hao

Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao. A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology. Acta Phys. Sin., 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
Citation: Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao. A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology. Acta Phys. Sin., 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the development of modern communication technology, unlimited energy harvesting technology has become more and more popular. Among them, the weak energy density wireless energy harvesting technology has broken through the limitations in traditional transmission lines and can use the “waste” energy in the environment, which has become very popular. The Schottky diode is the core device of the 2.45 G weak energy density wireless energy harvesting system, and its performance determines the upper limit of the system's rectification efficiency. From the material design point of view, using crystal orientation optimization technology and Sn alloying technology, we propose and design a Ge-based compound semiconductor with large effective mass, large affinity, and high electron mobility. On this basis, the device simulation tool is further used to set reasonable device material physical parameters and geometric structure parameters, and a Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission is realized. The simulation of the ADS rectifier circuit based on the SPICE model of the device shows that comparing with the conventional Schottky diode, the turn-on voltage of the device is reduced by about 0.1 V, the zero-bias capacitance is reduced by 6 fF, and the reverse saturation current is also significantly increased. At the same time, the designed new Ge-based Schottky diode is used as the core rectifier device to simulate the rectifier circuit. The results show that the new-style Ge-based Schottky diode is in the weak energy working area with input energy in a range of –10 — –20 dBm. The energy conversion efficiency is increased by about 10%. The technical solutions and relevant conclusions of this article can provide a useful reference for solving the problem of low rectification efficiency of the 2.45 G weak energy density wireless energy harvesting system.
      PACS:
      84.40.Dc(Microwave circuits)
      84.60.Bk(Performance characteristics of energy conversion systems; figure of merit)
      85.30.Tv(Field effect devices)
      Corresponding author: Song Jian-Jun, jianjun_79_81@xidian.edu.cn
    • Funds: Project supported by the National 111 Center (Grant No. B12026)

    随着无线通信技术的发展, 大量无线设备(如智能手机, 家用Wi-Fi, 通信基站, 广播电塔等)的出现给我们的生活带来了极大的便利, 这些设备不间断地发射无线电波, 它们之间通过无线电进行信息传递, 除此以外, 其余大部分能量都在环境中衰减浪费掉了. 根据我国环境射频能量分布评估, 2.45 G 射频信号为环境中的主要射频(radio frequency, RF)信号源, 但测得的环境射频功率密度较低[1,2]. 如果能将这部分能量利用起来, 并实现非接触无线供电, 将突破传输线的限制, 为大量低功耗设备在无需电池供电的情况下也可运行提供一种很好的解决方案, 极具应用潜力.

    微波无线能量收集系统(图1(a))可通过微波接收天线捕获环境中的射频信号, 系统中的整流电路利用核心元件肖特基二极管(Schottky barrier diode, SBD)对射频信号能量整流, 并将直流能量供应给接收负载, 是实现上述应用的理想系统. 然而, 在2.45 G 弱能量密度RF信号输入条件下, 基于SBD的微波射频无线能量收集系统整流效率偏低, 尚无法真正实现商业应用[3-5]. 目前, 工程师们主要开展基于Ge半导体肖特基二极管整流电路的优化研发工作, 通过外围电路被动开启优化, 以提升2.45 G弱能量密度无线能量收集系统整流效率, 但收效甚微[6-8].

    图 1 (a) 微波无线能量传输系统; (b) 典型肖特基二极管示意图\r\nFig. 1. (a) Microwave wireless energy transmission system; (b) schematic diagram of a typical Schottky diode.
    图 1  (a) 微波无线能量传输系统; (b) 典型肖特基二极管示意图
    Fig. 1.  (a) Microwave wireless energy transmission system; (b) schematic diagram of a typical Schottky diode.

    SBD作为2.45 G弱能量密度Wi-Fi波段无线能量收集系统整流电路的核心器件(图1(b)), 其性能决定了系统整流效率的上限. 因此, 欲进一步提升目前2.45 G弱能量密度Wi-Fi波段无线能量收集系统整流效率, 对该核心元器件-肖特基二极管予以设计优化势在必行[9-11]. 有鉴于此, 我们拟提出一种2.45 G弱能量密度无线能量收集用Ge基肖特基二极管, 旨在解决2.45 G弱能量密度无线能量收集系统整流效率低的问题.

    对于2.45 G弱能量密度Wi-Fi波段无线能量, 传统SBD无法正常开启工作. 因此, 优化设计2.45 G弱能量密度收集应用SBD必须考虑如何降低器件开启电压.

    基于器件物理相关原理, 首先推导建立了SBD开启电压模型. 依据文献, SBD从半导体到金属的电子流所形成的电流密度是

    Jsm=qn0(mn2πk0T)3/2dvydvzvx×exp[mn(v2x+v2y+v2z)2k0T]dvx=qn0(mn2πk0T)3/2exp[mn(v2y+v2z)2k0T]×dvydvzvx0vxexp(mnv2x2k0T)dvx=qn0(k0T2πmn)1/2exp(mnv2x02k0T)=qmnk202π23T2exp(EcEFk0T)exp(qVbi+qVk0T), (1)

    式中, mn为电子电导率有效质量, 其他各物理量详见文献[12].

    根据SBD器件金半接触的能带关系[13], 上式可进一步化简为

    Jsm=AT2exp(qϕnsk0T)exp(qvk0T), (2)

    式中, A=qmnk202π23称为有效理查逊常数; φns为金属一侧的势垒高度.

    金属一侧的势垒高度不随外加电压变化, 从金属到半导体的电子流所形成的电流密度Jms是一个常数, 它与不加外加电压时的Jsm大小相等, 方向相反, 则在热电子发射理论下, SBD的总电流密度为

    Jtotal=Jsm+Jms=AT2exp(qϕnsk0T)[exp(qvk0T)1]=Js[exp(qVk0T)1], (3)

    式中,

    Js=qmnk202π23T2exp(qϕnsk0T), (4)

    称为SBD的反向饱和电流. 若考虑镜像力和隧道效应对势垒高度的影响, 则

    Js=qmnk202π23T2exp(qϕnsk0T)×exp{1k0T14[2q7Ndπ2ε3(VbiV)]1/4}. (5)

    考虑到后续Silvaco器件性能模拟软件中仿真所得伏安特性曲线中的电流为线电流密度, 还需要将(5)式除以所设计器件长度L, 即Js=Jl/L, 进一步将其转换为线电流密度Jl的表达式, 并最终给出器件开启电压与线电流密度的关系为

    Von=k0Tln(1+1Js)q=k0Tln(1+1jl/L)q, (6)

    其中所设计器件的长度L为1 μm, 其方向沿下面二维图6中的视觉不可见坐标方向; 所设计器件宽度为14 μm, 其方向对应图6中的横向.

    综合以上模型, 可以发现, SBD开启电压与器件反向饱和电流密切相关. 同等条件下, 反向饱和电流越大, SBD开启电压越低. 反向饱和电流不仅仅与金半接触区域半导体电子有效质量、金属功函数有关, 还与半导体掺杂浓度和半导体的亲和能有关. 对于Ge SBD, 目前要想增大其反向饱和电流达到显著降低开启电压的目的, 只有通过材料设计想办法增大器件层结构材料中金半接触区域半导体电子有效质量与亲和能这条途径, 其他的方法已无法进一步实现优化.

    一方面, 我们希望增大SBD层结构材料中金半接触区域半导体电子有效质量, 以达到降低SBD开启电压的目的. 然而, 电子有效质量的增加会显著降低半导体的电子迁移率, 进而导致SBD串联电阻增大, 整流效率降低. 即增大半导体电子有效质量有利于SBD在弱能量密度信号情况下开启工作, 但低整流效率下SBD仍然无法实用.

    我们知道, Ge半导体电子有效质量具有各向异性, 沿不同的晶向电子电导率有效质量数值不同. 利用kp微扰理论, 图2建立了极坐标系下(001), (101), (111)剖面任意晶向Ge电子电导率有效质量模型(建模过程详见我们发表的文献[14]). 由图2可见, 沿各晶面典型高对称晶向, [100]晶向Ge电子电导率有效质量0.95m0, 数值最大. 其他依次为, [111]晶向0.64m0, [11ˉ2]晶向0.254m0, [1ˉ10]晶向最小, 约为0.151m0.

    图 2 (001), (101), (111)剖面任意晶向电子电导率有效质量(极坐标系下)[14]\r\nFig. 2. (001), (101), (111) cross-section arbitrary crystal orientation electron conductivity effective mass (in polar coordinate system)[14].
    图 2  (001), (101), (111)剖面任意晶向电子电导率有效质量(极坐标系下)[14]
    Fig. 2.  (001), (101), (111) cross-section arbitrary crystal orientation electron conductivity effective mass (in polar coordinate system)[14].

    据此, 我们提出, 一方面优化选用100晶向Ge半导体与金属形成金半接触, 增大金半接触区域半导体电子有效质量, 以降低SBD开启电压, 满足弱能量密度情况下SBD开启需要; 另一方面, 在SBD n半导体除金半接触区外的主体区域, 通过10%左右Sn合金化电子迁移率各向异性消除技术, 使Ge电子布居等能面各向异性L能谷转变为各向同性Γ能谷(见图3), 同时由于Γ能谷电子电导率有效质量为L能谷的四分之一左右, 这样, 合金化后的Ge半导体材料电子迁移率(与电子电导率有效质量成反比)与纯Ge半导体材料110晶向最高电子迁移率相比至少可提升二倍[15-17], 不仅解决了选用100晶向高电子电导率有效质量致半导体电子迁移率下降的问题, 还有效地降低了SBD的串联电阻, 提升了器件的整流效率[18].

    图 3 Sn合金化致Ge带隙类型转变示意图[19]\r\nFig. 3. Schematic diagram of Ge band gap type transition caused by Sn alloying[19].
    图 3  Sn合金化致Ge带隙类型转变示意图[19]
    Fig. 3.  Schematic diagram of Ge band gap type transition caused by Sn alloying[19].

    进一步讨论Ge半导体电子亲和能各向异性问题, 第一性原理仿真结果如图4所示(详见我们的工作[20]). 结果表明, [100]晶向Ge功函数为4.604 eV, [110]晶向为4.495 eV, [111]晶向为4.55 eV.

    图 4 (100), (110), (111)晶面Ge半导体功函数[18,19]\r\nFig. 4. (100), (110), (111) crystal plane Ge semiconductor work function[18,19].
    图 4  (100), (110), (111)晶面Ge半导体功函数[18,19]
    Fig. 4.  (100), (110), (111) crystal plane Ge semiconductor work function[18,19].

    利用半导体亲和能与功函数之间的关系[20], 可进一步解得, [100]晶向Ge亲和能为4.272 eV, [110]晶向为4.163 eV, [111]晶向为4.218 eV. 与(110)高电子迁移率晶面相比, 选用(100)晶面Ge作SBD的金半接触面, 可增大半导体亲和能, 有利于进一步降低SBD开启电压, 这与前述为增大电子电导率有效质量而选用(100)晶面方案不产生矛盾.

    在上节材料设计的基础上, 提出一种新型的SBD器件, 其材料物理参数与几何结构参数如图5(a)所示, 图5(b)为对比器件, 即传统Ge SBD器件剖面示意图.

    图 5 (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD\r\nFig. 5. (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.
    图 5  (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD
    Fig. 5.  (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.

    肖特基结采用金属W, 欧姆结采用金属Al, 且阴极设置于在n+ DR-GeSn层, 能够避免n+ DR-GeSn与Si衬底之间界面差致器件性能退化的问题; 轻掺杂n区域, 包括100 Ge帽层, 掺杂浓度为3 × 1017 cm–3; 重掺杂n+区域掺杂浓度为1 × 1020 cm–3. 此外, 为降低器件工艺成本, 该器件拟在Si衬底上制备实现. 为此, 采用两步法(低温LT+高温HT)工艺, 先制备高质量Ge缓冲层. 然后, 利用减压化学气相沉积(reduced pressure chemical vapour deposition, RPCVD)制备出DR-GeSn外延层.

    图6为Silvaco软件器件仿真结构和网格设置图, 这里要补充说明两点: 1) 考虑器件软件仿真收敛效率, 仿真结构中去掉了Si衬底和Ge缓冲层, 但不会影响仿真结果; 2) 网格设置过程中, Ge帽层与n GeSn层之间、n GeSn层与n+ GeSn层之间网格相对于其他区域更加密集, 以保证仿真结果收敛.

    图 6 新型SBD器件Silvaco仿真结构和网格设置截图\r\nFig. 6. A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.
    图 6  新型SBD器件Silvaco仿真结构和网格设置截图
    Fig. 6.  A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.

    从有效质量和亲和能两个材料物理指标设计出发, 提出引入100晶向Ge半导体与金属W形成SBD肖特基接触, 可以有效地降低SBD开启电压. 但在具体的器件设计过程中, 100晶向Ge半导体帽层需要多厚需要利用Silvaco工具予以仿真确定. 图7为不同厚度100晶向Ge半导体帽层新型SBD器件正向伏安特性曲线, 由图7可见, 以1 mA电流对应为器件开启电压, 当Ge帽层的厚度为0.1 μm时, 器件的开启电压最小, 比其他帽层厚度器件的开启电压降低约0.1 V. 因此, 依据优化结果, 所设计新型SBD器件100晶向Ge帽层厚度确定为0.1 μm.

    图 7 不同厚度$\left\langle {100} \right\rangle $晶向Ge帽层新型SBD器件正向伏安特性曲线\r\nFig. 7. Forward V-J characteristic curve of new SBD device with different thickness $\left\langle {100} \right\rangle $ crystal orientation Ge cap layer.
    图 7  不同厚度100晶向Ge帽层新型SBD器件正向伏安特性曲线
    Fig. 7.  Forward V-J characteristic curve of new SBD device with different thickness 100 crystal orientation Ge cap layer.

    图8(a)图8(b)中Ge, GeSn和Ge_on_GeSn三条曲线分别对应传统Ge SBD, GeSn SBD以及带Ge帽层新型GeSn SBD的伏安特性、电容特性器件仿真结果, 由图8(a)可见, 相对于传统Ge基SBD器件, 带Ge帽层新型GeSn SBD开启电压明显降低. 同时, 器件仍然保持了优异的整流非线性特性.

    图 8 三种Ge基SBD器件伏安特性、电容特性仿真结果\r\nFig. 8. volt-ampere characteristic Capacitance-voltage characteristic simulation results of three Ge-based SBD devices.
    图 8  三种Ge基SBD器件伏安特性、电容特性仿真结果
    Fig. 8.  volt-ampere characteristic Capacitance-voltage characteristic simulation results of three Ge-based SBD devices.

    如前所述, 带Ge帽层新型GeSn SBD低开启电压、非线性优异主要源于大有效质量、大亲和能、高迁移率的复合材料设计, 符合前期设计预想. 电容特性方面, 由图8(b)可见, 相对于传统Ge基SBD器件, 带Ge帽层新型GeSn SBD电容有一定程度降低, 这有利于后续对2.45 G弱能量密度RF信号整流效率的提升[21,22]. 依据器件物理相关知识, SBD电容与材料亲和能等物理参数相关, 其下降的原因也主要是因为新型复合材料的引入所致.

    图9为带Ge帽层新型GeSn SBD的器件击穿特性仿真结果, 由图可见, 当所施加电压达到约11.4 V时, 器件会发生反向击穿, 反向饱和电流的增大导致器件更容易被击穿, 但是击穿电压的变化在后续仿真中对弱能量密度区域的整流效率影响并不大.

    图 9 新型Ge基SBD器件击穿特性仿真结果\r\nFig. 9. Simulation results of the breakdown characteristics of the new Ge-based SBD device.
    图 9  新型Ge基SBD器件击穿特性仿真结果
    Fig. 9.  Simulation results of the breakdown characteristics of the new Ge-based SBD device.

    将所设计的带Ge帽层新型GeSn SBD、传统Ge SBD以及GeSn SBD正向伏安特性曲线、反向伏安特性曲线以及在2.45 GHz频率下的电容特性曲线带入Cadance Model Editor软件中, 提取器件的SPICE参数如表1所列.

    表 1  三种Ge基SBD器件SPICE参数表
    Table 1.  SPICE parameter table of three Ge-based SBD devices.
    参数Bv/VCj0/fFEG/eVIS/ANRS/ΩM
    Ge18.9360.699.6235 × 10–110.9992.90.5072
    GeSn1936.20.699.628 × 10–110.9992.80.5073
    Ge_on_GeSn11.4300.691.0437 × 10–81.10611.60.4037
    下载: 导出CSV 
    | 显示表格

    将所设计的肖特基二极管SPICE参数带入ADS仿真软件中, 采用图10所示仿真电路, 使用阻抗自匹配模型, 对整流电路进行优化.

    图 10 新型Ge基SBD器件整流测试电路\r\nFig. 10. New Ge-based SBD device rectification test circuit.
    图 10  新型Ge基SBD器件整流测试电路
    Fig. 10.  New Ge-based SBD device rectification test circuit.

    图11为仿真结果, 将电路匹配在–10 dBm附近, 匹配结果良好. 在输入能量为–10 dBm时, 能量转换效率达到了35.1%; 在输入能量为–20 dBm时, 能量转换效率达到了7.7%. 与传统Ge肖特基二极管相比, 该新型Ge基肖特基二极管在输入能量为–10 — –20 dBm的弱能量工作区域, 能量转换效率整体提升约10%.

    图 11 整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系\r\nFig. 11. Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.
    图 11  整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系
    Fig. 11.  Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.

    本文提出并设计了一种大有效质量、大亲和能和高电子迁移率的Ge基复合半导体肖特基器件, 给出了器件层结构材料物理参数和几何结构参数. Silvaco仿真结果表明: 与常规肖特基二极管相比, 该器件的开启电压降低大约0.1 V, 零偏电容降低6 fF, 反向饱和电流也显著提升. 同时采用所设计的新型Ge基肖特基二极管作为核心整流器件进行了整流电路的仿真, 结果表明, 该新型Ge基肖特基二极管在输入能量为–10 — –20 dBm的弱能量工作区域, 能量转换效率提升约10%. 本文有关新型Ge基复合半导体器件的研究, 可为提高弱能量密度下工作的微波无线能量传输系统的能量转换效率提供有价值的参考.

    [1]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 物理学报 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

    期刊类型引用(2)

    1. 张知原,李冰,刘仕奇,张洪林,胡斌杰,赵德双,王楚楠. 基于时间反演的局域空间多目标均匀恒定长时无线输能. 物理学报. 2022(01): 89-99 . 百度学术
    2. 毕思涵,宋建军,张栋,张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报. 2022(20): 322-331 . 百度学术

    其他类型引用(1)

  • 图 1  (a) 微波无线能量传输系统; (b) 典型肖特基二极管示意图

    Figure 1.  (a) Microwave wireless energy transmission system; (b) schematic diagram of a typical Schottky diode.

    图 2  (001), (101), (111)剖面任意晶向电子电导率有效质量(极坐标系下)[14]

    Figure 2.  (001), (101), (111) cross-section arbitrary crystal orientation electron conductivity effective mass (in polar coordinate system)[14].

    图 3  Sn合金化致Ge带隙类型转变示意图[19]

    Figure 3.  Schematic diagram of Ge band gap type transition caused by Sn alloying[19].

    图 4  (100), (110), (111)晶面Ge半导体功函数[18,19]

    Figure 4.  (100), (110), (111) crystal plane Ge semiconductor work function[18,19].

    图 5  (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD

    Figure 5.  (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.

    图 6  新型SBD器件Silvaco仿真结构和网格设置截图

    Figure 6.  A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.

    图 7  不同厚度100晶向Ge帽层新型SBD器件正向伏安特性曲线

    Figure 7.  Forward V-J characteristic curve of new SBD device with different thickness 100 crystal orientation Ge cap layer.

    图 8  三种Ge基SBD器件伏安特性、电容特性仿真结果

    Figure 8.  volt-ampere characteristic Capacitance-voltage characteristic simulation results of three Ge-based SBD devices.

    图 9  新型Ge基SBD器件击穿特性仿真结果

    Figure 9.  Simulation results of the breakdown characteristics of the new Ge-based SBD device.

    图 10  新型Ge基SBD器件整流测试电路

    Figure 10.  New Ge-based SBD device rectification test circuit.

    图 11  整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系

    Figure 11.  Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.

    表 1  三种Ge基SBD器件SPICE参数表

    Table 1.  SPICE parameter table of three Ge-based SBD devices.

    参数Bv/VCj0/fFEG/eVIS/ANRS/ΩM
    Ge18.9360.699.6235 × 10–110.9992.90.5072
    GeSn1936.20.699.628 × 10–110.9992.80.5073
    Ge_on_GeSn11.4300.691.0437 × 10–81.10611.60.4037
    DownLoad: CSV
  • [1]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 物理学报 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

  • [1] Wu Peng, Zhu Hong-Yu, Wu Jin-Xing, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Low leakage current and high breakdown voltage of AlGaN/GaN Schottky barrier diodes with wet-etching groove anode. Acta Physica Sinica, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [2] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [4] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [5] Bi Si-Han, Song Jian-Jun, Zhang Dong, Zhang Shi-Qi. A Ge-based dual channel rectified single ended Schottky barrier field effect transistor for 2.45 GHz microwave wireless energy transmission. Acta Physica Sinica, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [6] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun. Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer. Acta Physica Sinica, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [10] Du Yuan-Yuan, Zhang Chun-Lei, Cao Xue-Lei. -ray detector based on n-type 4H-SiC Schottky barrier diode. Acta Physica Sinica, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [11] Zhai Dong-Yuan, Zhao Yi, Cai Yin-Fei, Shi Yi, Zheng You-Dou. Effect of the trench shape on the electrical properties of silicon based trench barrier schottky diode. Acta Physica Sinica, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [12] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [13] Liu Yu-Dong, Du Lei, Sun Peng, Chen Wen-Hao. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes. Acta Physica Sinica, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [14] Wang Nan, Yao Wen-Jing, Tang Lin-Feng, Guan Qiang. Effect of orientation on integrity of single crystal during laser melted single crystal. Acta Physica Sinica, 2010, 59(11): 7941-7948. doi: 10.7498/aps.59.7941
    [15] Zou Jian-Hua, Tao Hong, Wu Hong-Bin, Peng Jun-Biao. Improved performance of white polymer light emitting diodes. Acta Physica Sinica, 2009, 58(2): 1224-1228. doi: 10.7498/aps.58.1224
    [16] Wang Yan-Xin, Zhang Qi-Feng, Sun Hui, Chang Yan-Ling, Wu Jin-Lei. Fabrication of ZnO nanowire-based diodes and their light-emitting properties. Acta Physica Sinica, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [17] Yang Li-Xia, Du Lei, Bao Jun-Lin, Zhuang Yi-Qi, Chen Xiao-Dong, Li Qun-Wei, Zhang Ying, Zhao Zhi-Gang, He Liang. The effect of 60Co γ-ray irradiation on the 1/f noise of Schottky barrier diodes. Acta Physica Sinica, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] Liu Jie, Hao Yue, Feng Qian, Wang Chong, Zhang Jin-Cheng, Guo Liang-Liang. Characterization of Ni/Au GaN Schottky contact base on I-V-T and C-V-T measurements. Acta Physica Sinica, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [19] . Acta Physica Sinica, 1965, 21(9): 1697-1699. doi: 10.7498/aps.21.1697
    [20] SEN HSUEH-CHU, CHEN NING-CHIANG. PRESSURE DEPENDENCE OF THE CURRENT-VOLTAGE CHARACTERISTICS OF GERMANIUM ESAKI DIODES. Acta Physica Sinica, 1964, 20(10): 1019-1026. doi: 10.7498/aps.20.1019
  • 期刊类型引用(2)

    1. 张知原,李冰,刘仕奇,张洪林,胡斌杰,赵德双,王楚楠. 基于时间反演的局域空间多目标均匀恒定长时无线输能. 物理学报. 2022(01): 89-99 . 百度学术
    2. 毕思涵,宋建军,张栋,张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报. 2022(20): 322-331 . 百度学术

    其他类型引用(1)

Metrics
  • Abstract views:  5746
  • PDF Downloads:  62
  • Cited By: 3
Publishing process
  • Received Date:  10 October 2020
  • Accepted Date:  03 February 2021
  • Available Online:  06 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回