-
利用卢瑟夫背散射/沟道技术和金属有机化学气相沉积方法, 对蓝宝石衬底上 在不同温度、压强下生长的Ga2+xO3-x薄膜进行结构和结晶品质的测量与分析; 并结合高分辨X射线衍射分析技术, 通过对其对称(402)面的θ–2θ及ω扫描, 确定了其结构类型及结晶品质. 实验表明: 在相同的生长温度(500 ℃)下, 结晶品质随压强的下降而变好, 生长压强为15 Torr (1 Torr=133.322 Pa)的样品其结晶品质最好, 沿轴入射之比χmin值为14.5%; 在相同的生长压强(15 Torr)下, 结晶品质受生长温度的影响不大, 所以, 生长温度不是改变结晶品质的主要因素; 此外, 在相同的生长条件下制备的样品, 分别经过700, 800和900 ℃退火后, 其结晶品质随退火温度的变化而变化. 退火温度为800 ℃的样品的结晶品质最好, χmin值为11.1%; 当退火温度达到900 ℃时, 样品部分分解; 经热处理的样品其X射线衍射谱中有一个强的Ga2O3 (402)面衍射峰, 其半峰全宽为0.5°, 表明该Ga2O3外延膜是(402)择优取向.Ga2+xO3-x thin films grown on sapphire substrates by metal-organic chemical vapor deposition under different conditions (temperature pressure) are studied by rutherford backscattering spectrometry/channeling. The structural information and crystalline quality are further investigated by high resolution X-ray diffraction (HR-XRD). The results suggest that at the same growth-temperature the crystalline quality is improved with pressure decreasing, while χmin reaches a minimum 14.5% when the pressure decreases to 15 Torr (1 Torr=133.322 Pa). Then if the pressure is kept at 15 Torr, all films present similar crystalline qualities, which hints that the temperature is not a chief factor. Moreover, films prepared under the same condition are annealed at different temperatures: 700, 800 and 900 ℃. At first the crystalline quality is improved by increasing the annealing temperature and reaches a best χmin of 11.1%. Nevertheless, as the annealing temperature is further increased, the samples become decomposed. XRD spectra of annealed samples each reveal a strong peak of Ga2O3 (402), indicating that the epitaxial layer has a preferred orientation (402).
-
Keywords:
- Ga2O3 /
- rutherford backscattering spectrometry/channeling /
- X-ray diffraction /
- crystalline quality
[1] Zhang J G, Xia C T, Wu F, Pei G Q, Xu J 2005 J. Synth. Cryst. 34 676 (in Chinese) [张俊刚, 夏长泰, 吴锋, 裴广庆, 徐军 2005 人工晶体学报 34 676]
[2] Lang A C, Fleischer M, Meixner H 2000 Sens. Actuators B 66 80
[3] Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H 2000 Thin Solid Films 411 134
[4] Al-Kuhaili M F, Durrani S M A, Khawaja E E 2003 Appl. Phys. Lett. 83 4533
[5] Passlack M, Hong M, Mannaerts J P 1996 Appl. Phys. Lett. 68 1099
[6] Kim H W, Kim N H 2004 Mater. Sci. Eng. B 110 34
[7] Dai J N, Wang L, Fang W Q, Pu Y, Li F, Zheng C D, Liu W H, Jiang F Y 2006 Chin. J. Lumin. 27 417 (in Chinese) [戴江南, 王立, 方文卿, 蒲勇, 李璠, 郑畅达, 刘卫华, 江风益2006发光学报 27 417]
[8] Wang H, Yao S D, Pan Y B, Zhang G Y 2007 Acta Phys. Sin. 56 3350 (in Chinese) [王 欢, 姚淑德, 潘尧波, 张国义 2007 物理学报 56 3350]
[9] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y, Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese) [丁志博, 王 琦, 王 坤, 王 欢, 陈田祥, 张国义, 姚淑德 2007 物理学报 56 2873]
[10] Doolittle L R 1985 Nucl. Instrum. Methods B 9 344
[11] Cullity B D 1978 Elements of X-ray Diffractions (MA: Addison-WESLEY) p102
-
[1] Zhang J G, Xia C T, Wu F, Pei G Q, Xu J 2005 J. Synth. Cryst. 34 676 (in Chinese) [张俊刚, 夏长泰, 吴锋, 裴广庆, 徐军 2005 人工晶体学报 34 676]
[2] Lang A C, Fleischer M, Meixner H 2000 Sens. Actuators B 66 80
[3] Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H 2000 Thin Solid Films 411 134
[4] Al-Kuhaili M F, Durrani S M A, Khawaja E E 2003 Appl. Phys. Lett. 83 4533
[5] Passlack M, Hong M, Mannaerts J P 1996 Appl. Phys. Lett. 68 1099
[6] Kim H W, Kim N H 2004 Mater. Sci. Eng. B 110 34
[7] Dai J N, Wang L, Fang W Q, Pu Y, Li F, Zheng C D, Liu W H, Jiang F Y 2006 Chin. J. Lumin. 27 417 (in Chinese) [戴江南, 王立, 方文卿, 蒲勇, 李璠, 郑畅达, 刘卫华, 江风益2006发光学报 27 417]
[8] Wang H, Yao S D, Pan Y B, Zhang G Y 2007 Acta Phys. Sin. 56 3350 (in Chinese) [王 欢, 姚淑德, 潘尧波, 张国义 2007 物理学报 56 3350]
[9] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y, Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese) [丁志博, 王 琦, 王 坤, 王 欢, 陈田祥, 张国义, 姚淑德 2007 物理学报 56 2873]
[10] Doolittle L R 1985 Nucl. Instrum. Methods B 9 344
[11] Cullity B D 1978 Elements of X-ray Diffractions (MA: Addison-WESLEY) p102
计量
- 文章访问数: 10669
- PDF下载量: 620
- 被引次数: 0