Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt

Zhao Ji-Yu Tan Qiu-Hong Liu Lei Yang Wei-Ye Wang Qian-Jin Liu Ying-Kai

Citation:

High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt

Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai
PDF
HTML
Get Citation
  • Ternary alloy CdSxSe1–x has the physical properties of CdS and CdSe, and its band gap can be adjusted by changing the component ratio of the elements. The alloy has excellent photoelectric properties and has potential application in optoelectronic devices. Although one has made some research progress of the CdSSe-based photodetectors, their performances are still far from the commercial requirements, so how to improve the performance of the device is the focus of current research. In this work, a single crystal CdS0.42Se0.58 nanobelt device is first prepared by thermal evaporation. Under 550 nm illumination and 1 V bias, the ratio of photocurrent to dark current of the device is 1.24×103, the responsivity arrives at 60.1 A/W, and the external quantum efficiency reaches 1.36×104%, and the detectivity is 2.16×1011 Jones. Its rise time and fall time are about 41.1/41.5 ms, respectively. Secondly, after the CdSSe nanobelt is decorated by Au nanoislands, the optoelectronic performance of the device is significantly improved. Under 550 nm illumination and 1 V bias, the Ip/Id ratio, responsivity, external quantum efficiency and detectivity of the device are increased by 5.4, 11.8, 11.8 and 10.6 times, respectively, and the rise time and fall time are both reduced to half of counterparts of single CdSSe nanobelt. Finally, the microscopic physical mechanism of the enhanced optoelectronic performance of the device is explained based on localized surface plasmon resonance of Au nanoislands. After the combination of gold nanoislands and CdSSe nanobelt, the difference in Fermi level between them results in the transfer of electrons from CdSSe nanobelt to Au nanoislands, thus forming an internal electric field at the interface, which is directed from CdSSe nanobelt to Au nanoislands. Under illumination, the electrons in the Au nanoislands acquire enough energy to jump over the Schottky barrier because of localized surface plasmon resonance. These photoexcited hot electrons are trapped and stored in extra energy levels above the conduction band minimum, and then are cooled down to the band edge, thus realizing the transfer of electrons from Au nanoislands to CdSSe nanobelt. Moreover, the internal electric field also greatly promotes the transfer of hot electrons from Au nanoislands to CdSSe nanobelt, and inhibits the recombination of carriers at the interface, resulting in large photocurrent. Our work provides an effective strategy for fabricating high-performance photodetectors without increasing the device area.
      Corresponding author: Tan Qiu-Hong, tanqiuhong1@126.com ; Wang Qian-Jin, qjwang@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564010, 11864046, 11764046) and the Basic Research Program of Yunnan Province, China (Grant Nos. 202001AT070064, 202101AT070124).
    [1]

    Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar

    [2]

    An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar

    [3]

    Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar

    [4]

    Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar

    [5]

    Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar

    [6]

    Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar

    [7]

    Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar

    [8]

    Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar

    [9]

    Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar

    [10]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [11]

    Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar

    [12]

    Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar

    [13]

    Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar

    [14]

    Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar

    [15]

    Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar

    [16]

    Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar

    [17]

    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar

    [18]

    Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar

    [19]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar

    [20]

    Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar

    [21]

    Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar

    [22]

    Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar

    [23]

    Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar

    [24]

    Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar

    [25]

    Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar

    [26]

    Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar

    [27]

    Halas N J 2010 Nano Lett. 10 3816Google Scholar

    [28]

    Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar

    [29]

    管昱多 2022 博士学位论文 (长春: 吉林大学)

    Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [30]

    Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar

    [31]

    Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar

    [32]

    Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar

    [33]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar

    [34]

    Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar

    [35]

    Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [36]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [37]

    Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [38]

    Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar

    [39]

    Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar

    [40]

    Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar

    [41]

    Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar

    [42]

    Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar

    [43]

    Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar

    [44]

    Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar

    [45]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar

    [46]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [47]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [48]

    Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar

    [49]

    Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar

    [50]

    Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar

    [51]

    An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar

    [52]

    Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar

    [53]

    Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar

    [54]

    Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar

    [55]

    Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar

    [56]

    Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar

    [57]

    Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar

    [58]

    Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar

    [59]

    Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar

    [60]

    李含春 2018 硕士学位论文 (昆明: 云南师范大学)

    Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)

    [61]

    Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar

  • 图 1  (a)和(b) CdSSe纳米带SEM图; (c) Au@CdSSe纳米带SEM图(插图为放大后的Au纳米岛的SEM图); (d)和(e) CdSSe纳米带的TEM图((e)插图为CdSSe纳米带的SAED图); (f) Au纳米粒子的TEM图

    Figure 1.  (a) and (b) SEM images of CdSSe nanobelts; (c) SEM images of Au@CdSSe nanobelts (inset: SEM images of Au nanoislands (NIS)); (d) and (e) TEM images of CdSSe nanobelts (inset: SAED images of CdSSe nanobelts in (e)); (f) TEM images of Au nanoparticles.

    图 2  (a) CdSSe纳米带的XRD图; (b)—(d) CdSSe纳米带的XPS图

    Figure 2.  (a) XRD patterns of CdSSe nanobelts; (b)–(d) XPS images of CdSSe nanobelts.

    图 3  (a)—(d) CdSSe纳米带的元素面扫描; (e)—(i)Au纳米岛@CdSSe纳米带的元素面扫描

    Figure 3.  (a)–(d) Element surface scanning of CdSSe nanobelt; (e)–(i) the element surface scan of the Au NIS @CdSSe nanobelts.

    图 4  (a) Au纳米岛@CdSSe纳米带器件SEM图以及(b)光电探测器示意图

    Figure 4.  The SEM image of (a) Au NIS@CdSSe nanobelts device and (b) its schematic illustrations.

    图 5  (a) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在1 V偏压下的光谱响应图; (b)单一CdSSe纳米带及Au纳米岛的紫外-可见光光谱图(插图为带隙拟合图); (c), (d) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在550 nm单色光、0.697 mW/cm2光功率密度下的I-V

    Figure 5.  (a) Spectral response of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors at 1 V bias; (b) UV-visible spectrum of single CdSSe nanobelt (inset is bandgap diagram) and NIS; (c), (d) the I-V plots of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors under optical power density of 0.697 mW/cm2 at 550 nm.

    图 6  (a) CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(b)光电流与光功率密度的函数拟合关系图; (c) Au纳米岛修饰的CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(d)光电流与光功率密度的函数拟合关系图

    Figure 6.  (a) The I-V curves of CdSSe nanobelt photodetectors with different optical power densities under 550 nm light, and (b) the fitting relation diagram of the function of photocurrent and optical power density; (c) the I-V curves of the Au NIS decorated CdSSe nanobelt photodetector with different optical power densities under 550 nm light, and (d) the fitting relation diagram of the function of photocurrent and optical power density.

    图 7  Au纳米岛修饰CdSSe纳米带前后探测器在550 nm单色光下光谱响应、外量子效率及探测率随光功率密度的变化关系图

    Figure 7.  Relationship between spectral response, external quantum efficiency, detectivity and optical power densities of CdSSe nanobelt and Au NIS decorated CdSSe nanobelt devices, respectively.

    图 8  (a), (b) CdSSe纳米带光电探测器在550 nm光功率密度为 0.697 mW/cm2下的周期性I-t图以及单个I-t图; (c), (d) Au纳米岛@CdSSe纳米带光电探测器在550 nm光功率密度为0.697 mW/cm2下的周期性I-t图以及单个I-t

    Figure 8.  (a) and (b) Periodic I-t diagram and single I-t diagram of CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2; (c) and (d) the periodic I-t plots and individual I-t plots of the Au NIS@CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2.

    图 9  Au纳米岛与CdSSe纳米带接触前后体系能带结构示意图 (a)接触前CdSSe纳米带在光激发下电子跃迁图; (b)接触后光激发下Au纳米岛@CdSSe纳米带电子转移示意图; E0为真空能级、WAuWCdSSe为Au和CdSSe的功函数、EVEC为价带顶和导带底

    Figure 9.  Band structure diagram of CdSSe nanoribbon before and after contact with Au NIS: (a) Electron transition diagram of pure CdSSe nanoribbon under photoexcitation; (b) schematic diagram of electron transfer of Au@CdSSe nanobelt under photoexcitation; E0 is the vacuum energy level, WAu and WCdSSe are the work functions of Au and CdSSe, EV and EC are the valence band maximum and conduction band minimum, respectively

    表 1  基于其他低维度高性能光电探测器重要参数比较

    Table 1.  Comparison of important parameters based on other low-dimension high-performance photodetectors.

    Device structureBias voltage/VEQE/%R/(A·W–1)Ip/IdD*/JonesRise/decay timeRef.
    CdS0.76Se0.24 NBs119.110.4 (674 nm)8161.62/4.70 ms[23]
    2D CdS0.14Se0.86 flaks51.94×103703 (450 nm)233.41×1010 39/39 ms[50]
    CdSe Nanotubes176 (氙灯)1.29×1032.75×10101.85/0.2 s[51]
    2D CdS flake20.18 (Visible)1032.71×10914/8 ms[52]
    CdSSe NBs11.36×10460.1 (550 nm)1.24×1032.16×101141.1/41.5 msThis work
    Au NIS@CdSSe NBs11.61×105711.4 (550 nm)6.70×1032.29×101222.6/23.0 msThis work
    DownLoad: CSV
  • [1]

    Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar

    [2]

    An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar

    [3]

    Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar

    [4]

    Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar

    [5]

    Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar

    [6]

    Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar

    [7]

    Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar

    [8]

    Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar

    [9]

    Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar

    [10]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [11]

    Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar

    [12]

    Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar

    [13]

    Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar

    [14]

    Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar

    [15]

    Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar

    [16]

    Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar

    [17]

    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar

    [18]

    Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar

    [19]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar

    [20]

    Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar

    [21]

    Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar

    [22]

    Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar

    [23]

    Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar

    [24]

    Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar

    [25]

    Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar

    [26]

    Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar

    [27]

    Halas N J 2010 Nano Lett. 10 3816Google Scholar

    [28]

    Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar

    [29]

    管昱多 2022 博士学位论文 (长春: 吉林大学)

    Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [30]

    Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar

    [31]

    Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar

    [32]

    Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar

    [33]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar

    [34]

    Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar

    [35]

    Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [36]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [37]

    Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [38]

    Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar

    [39]

    Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar

    [40]

    Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar

    [41]

    Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar

    [42]

    Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar

    [43]

    Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar

    [44]

    Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar

    [45]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar

    [46]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [47]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [48]

    Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar

    [49]

    Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar

    [50]

    Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar

    [51]

    An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar

    [52]

    Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar

    [53]

    Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar

    [54]

    Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar

    [55]

    Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar

    [56]

    Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar

    [57]

    Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar

    [58]

    Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar

    [59]

    Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar

    [60]

    李含春 2018 硕士学位论文 (昆明: 云南师范大学)

    Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)

    [61]

    Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar

  • [1] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [2] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Zhu Wen-Hui, Feng Lei, Zhang Ke-Xiong, Zhu Jun. Extraordinary transmission in ultraviolet band in (AlxGa1–x)2O3/Al nanopore array. Acta Physica Sinica, 2024, 73(20): 207801. doi: 10.7498/aps.73.20240928
    [5] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [6] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [7] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [9] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [11] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [12] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [13] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [14] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [15] Hong Xin, Wang Chen-Chen, Liu Jiang-Tao, Wang Xiao-Qiang, Yin Xue-Jie. Photothermal properties of core-capped gold nanoparticles. Acta Physica Sinica, 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [16] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [17] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [18] Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles. Acta Physica Sinica, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [19] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] Localized surface plasmon resonance of half-shell gold film. Acta Physica Sinica, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
Metrics
  • Abstract views:  3747
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2022
  • Accepted Date:  14 February 2023
  • Available Online:  16 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回