-
High resolution and high sensitive low light level imaging sensors are crucial in many applications such as astronomical observation, high energy physics, night vision and remote sensing. The electron bombarded complementary metal oxide semiconductor (EBCMOS) sensor is a novel imager in which very high gain can be produced by hitting the semiconductor with high voltage without any noise generation. In addition, it can process high-definition image with kHz frame rate. These advatages make the EBCMOS an ideal device for ultrafast single-photon imgaing. In this article, we present an EBCMOS sensor working in the ultraviolet range by combing the technology of vacuum photocathode and back illuminated CMOS together. This EBCMOS sensor can realize very high resolution in 40 mlx light illumination environment. The achieved spatial resolution is 25 lp/mm (line paris per millimeter) when the electric field intensity is 5000 V/mm. The liner relation between electric field intensity and the resolution indicates that much better perofromance can be achieved if the electric field intensity increases to a much higher value. The EBCMOS sensor developed in this paper can be directly applied to UV weak light detection, moreover it will provide a good reference for further developing the visible and near infrared sensitive EBCMOS sensors.
-
Keywords:
- complementary metal oxide semiconductor /
- electron bombareded gain /
- low light level imaging /
- UV detection
[1] Seitz P, Theuwissen A J P 2011 Single-Photon Imaging (Berlin Heidelberg: Springer) pp1-344
[2] Jin W Q, Tao Y, Shi F, Li B Q 2013 Infrared Laser Eng. 11 44(in Chinese) [金伟其, 陶禹, 石峰, 李本强 2013 红外与激光工程 11 44]
[3] Huiskamp T, Sengers W, Pemen A J M 2016 Rev. Sci. Inst. 87 12
[4] Qi L, Just F, Leuchs G, Chekhova M V 2016 Opt. Express 24 23
[5] Mortensen K I, Flyvbjerg H 2016 Sci. Rep. 6 28680
[6] Denvir D J, Conroy E 2003 P. Soc. Photo-Opt. Ins. 4796 164
[7] Robbins M S, Hadwen B J 2003 IEEE Trans. Electron Dev. 50 5
[8] Hirvonen L M, Jiggins S, Sergent N, Zanda G, Suhling K 2015 Nucl. Instrum. Methods Phys. Res. Sect.. 787 1
[9] Hirvonen L M, Barber M J, Suhling K 2016 Nucl. Instrum. Methods Phys. Res. Sect.. 820 121
[10] Zuo F, Gao Y, Gao Z Y, Lui G R 2003 Opt. Tech. 9 2(in Chinese) [左昉, 高岳, 高稚允, 刘广荣 2003 光学技术 9 2]
[11] Aris S, David J B, Aaron B 1974 Proc. IEEE 62 8
[12] Pierre M 2003 Nucl. Instrum. Methods Phys. Res. Sect.. 504 199
[13] Barbier R, Baudot J, Chabanat E, Depasse P, Dulinski W, Estre N, Kaiser C T, Laurent N, Winter M 2009 Nucl. Instrum. Methods Phys. Res. Sect.. 610 54
[14] Verle W, Kenneth A C, Philip W A, Patrick G, Stephen J G 2005 OPTRO International Symposium Paris, France May 10 2005
[15] Hirvonen L M, Suhling K 2016 Sensors 16 5
[16] Cajgfinger T, Dominjon A, Barbier R 2015 Nucl. Instrum. Methods Phys. Res. Sect.. 787 176
[17] Dominjon A, Ageron M, Barbier R, Billault M, Brunner J, Cajgfinger T, Calabria P, Chabanat E, Chaize D, Doan Q T, Guerin C, Houles J, Vagneron L 2012 Nucl. Instrum. Methods Phys. Res. Sect.. 695 172
[18] Xiong Z P, Li Q, Wang Q 2012 Laser Infrared 42 7(in Chinese) [熊智鹏, 李琦, 王骐 2012 激光与红外 42 7]
[19] Song D, Shi F, Li Y 2016 Infrared Laser Eng. 45 2(in Chinese) [宋德, 石峰, 李野 2016 红外与激光工程 45 2]
[20] Xu P X, Tang G H, Tang J Y, Yang J, Chen X L, Zhong W J, Zhao W J 2016 Opt. Tech. 36 4(in Chinese) [徐鹏霄, 唐光华, 唐家业, 杨杰, 陈鑫龙, 钟伟俊, 赵文锦 2016 光电子技术 36 4]
-
[1] Seitz P, Theuwissen A J P 2011 Single-Photon Imaging (Berlin Heidelberg: Springer) pp1-344
[2] Jin W Q, Tao Y, Shi F, Li B Q 2013 Infrared Laser Eng. 11 44(in Chinese) [金伟其, 陶禹, 石峰, 李本强 2013 红外与激光工程 11 44]
[3] Huiskamp T, Sengers W, Pemen A J M 2016 Rev. Sci. Inst. 87 12
[4] Qi L, Just F, Leuchs G, Chekhova M V 2016 Opt. Express 24 23
[5] Mortensen K I, Flyvbjerg H 2016 Sci. Rep. 6 28680
[6] Denvir D J, Conroy E 2003 P. Soc. Photo-Opt. Ins. 4796 164
[7] Robbins M S, Hadwen B J 2003 IEEE Trans. Electron Dev. 50 5
[8] Hirvonen L M, Jiggins S, Sergent N, Zanda G, Suhling K 2015 Nucl. Instrum. Methods Phys. Res. Sect.. 787 1
[9] Hirvonen L M, Barber M J, Suhling K 2016 Nucl. Instrum. Methods Phys. Res. Sect.. 820 121
[10] Zuo F, Gao Y, Gao Z Y, Lui G R 2003 Opt. Tech. 9 2(in Chinese) [左昉, 高岳, 高稚允, 刘广荣 2003 光学技术 9 2]
[11] Aris S, David J B, Aaron B 1974 Proc. IEEE 62 8
[12] Pierre M 2003 Nucl. Instrum. Methods Phys. Res. Sect.. 504 199
[13] Barbier R, Baudot J, Chabanat E, Depasse P, Dulinski W, Estre N, Kaiser C T, Laurent N, Winter M 2009 Nucl. Instrum. Methods Phys. Res. Sect.. 610 54
[14] Verle W, Kenneth A C, Philip W A, Patrick G, Stephen J G 2005 OPTRO International Symposium Paris, France May 10 2005
[15] Hirvonen L M, Suhling K 2016 Sensors 16 5
[16] Cajgfinger T, Dominjon A, Barbier R 2015 Nucl. Instrum. Methods Phys. Res. Sect.. 787 176
[17] Dominjon A, Ageron M, Barbier R, Billault M, Brunner J, Cajgfinger T, Calabria P, Chabanat E, Chaize D, Doan Q T, Guerin C, Houles J, Vagneron L 2012 Nucl. Instrum. Methods Phys. Res. Sect.. 695 172
[18] Xiong Z P, Li Q, Wang Q 2012 Laser Infrared 42 7(in Chinese) [熊智鹏, 李琦, 王骐 2012 激光与红外 42 7]
[19] Song D, Shi F, Li Y 2016 Infrared Laser Eng. 45 2(in Chinese) [宋德, 石峰, 李野 2016 红外与激光工程 45 2]
[20] Xu P X, Tang G H, Tang J Y, Yang J, Chen X L, Zhong W J, Zhao W J 2016 Opt. Tech. 36 4(in Chinese) [徐鹏霄, 唐光华, 唐家业, 杨杰, 陈鑫龙, 钟伟俊, 赵文锦 2016 光电子技术 36 4]
Catalog
Metrics
- Abstract views: 7798
- PDF Downloads: 246
- Cited By: 0