Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction of a fully transparent β-Ga2O3 multi-mode solar-blind detection experimental system based on back incidence technology

DONG Dianmeng WANG Jingchen XU Xiaoyun PENG Min WANG Zechuan WANG Cheng WU Zhenping

Citation:

Construction of a fully transparent β-Ga2O3 multi-mode solar-blind detection experimental system based on back incidence technology

DONG Dianmeng, WANG Jingchen, XU Xiaoyun, PENG Min, WANG Zechuan, WANG Cheng, WU Zhenping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To meet the urgent demand for high-performance photodetectors in emerging solar-blind ultraviolet communication applications, this study systematically designs and implements a fully transparent β-Ga2O3 solar-blind photodetector based on a back-illumination architecture. The device is fabricated using RF magnetron sputtering to epitaxially grow high-quality β-Ga2O3 films (~300 nm in thickness, ~4.98±0.05 eV in bandgap) on double-polished sapphire substrates, with indium tin oxide (ITO) interdigitated electrodes forming efficient quasi-Ohmic contacts with n-type Ga2O3. The core advantage of this design lies in exploiting the high deep-UV transmittance of double-polished sapphire substrates, enabling incident photons to completely bypass the UV-absorbing ITO electrodes and eliminate photon loss caused by electrode shadowing effects in traditional front-illumination configurations. Consequently, the device demonstrates exceptional optoelectronic performance: a maximum responsivity of 0.46 A/W corresponding to an external quantum efficiency of 222.4%, an outstanding UV/visible rejection ratio of 1.2×104, a minimum noise equivalent power of 1.52 pW/Hz1/2, and a peak specific detectivity of 1.39×1011 Jones, with fast response times of 24 μs (rise) and 1.24 ms (decay). Building on this high-performance detector platform, we further explore its multifunctional application potential by constructing a polarization detection system that utilizes the intrinsic lattice anisotropy of monoclinic β-Ga2O3, and successfully demonstrating a non-line-of-sight (NLOS) UV communication system that validates high-fidelity information transmission in complex scattering channels. This work provides effective physical insights and experimental basis for developing next-generation Ga2O3-based optoelectronic devices with integrated high sensitivity, polarization resolution, and NLOS communication capabilities, showing promising applications in secure communications and polarization imaging.
  • 图 1  (a) 磁控溅射沉积系统示意图; (b) 在双面抛光Al2O3衬底上沉积的β-Ga2O3薄膜的XRD谱图; (c) β-Ga2O3薄膜表面的AFM形貌图; (d) 薄膜的光学吸收光谱, 插图为(αhν)2的关系图, 用于带隙估算

    Figure 1.  (a) Schematic diagram of the magnetron sputtering deposition system; (b) XRD pattern of the β-Ga2O3 thin film deposited on a double-side polished Al2O3 substrate; (c) AFM surface morphology of the β-Ga2O3 film; (d) optical absorption spectrum of the film, with the inset showing the (αhν)2 versus plot for bandgap determination.

    图 2  (a) 基于Ga2O3的全透明日盲紫外探测器结构示意图; (b) 在正入射与背入射光照模式下的I-V特性曲线; (c) 器件的归一化光谱响应; (d) 在暗态和255 nm紫外光照下的噪声电流比较

    Figure 2.  (a) Schematic structure of the fully transparent Ga2O3-based solar-blind UV photodetector; (b) I-V characteristics under front-illumination and back-illumination; (c) normalized spectral responsivity of the device; (d) noise current measured in the dark and under 255 nm UV illumination.

    图 3  (a) 在黑暗和254 nm紫外光照条件下, β-Ga2O3全透明日盲探测器的I-V特性曲线; (b) 电阻特性; (c) 响应度、外量子效率与入射光功率强度的对应关系; (d) 等效噪声功率、比探测率与入射光功率强度的对应关系

    Figure 3.  (a) I-V characteristics of the β-Ga2O3 transparent solar-blind photodetector in the dark and under 254 nm UV illumination; (b) resistance behavior of the device as a function of applied bias; (c) variation of R and EQE with incident optical power; (d) dependence of NEP and specific D* on incident optical power.

    图 4  (a) 在5 V偏压和255 nm紫外光照射下, 探测器背入射光开关响应随光强变化的动态特性; (b) 在5 V电压下, 266 nm脉冲激光激发时的瞬态光响应

    Figure 4.  (a) Dynamic back-illumination switching response of the device under 5 V bias and 255 nm UV illumination at varying intensities; (b) transient photoresponse of the Ga2O3 transparent solar-blind photodetector under 266 nm pulsed laser excitation at 5 V bias.

    图 5  (a) 正入射模式下Ga2O3全透明日盲探测器的示意图; (b) 背入射模式下的示意图; (c), (d) 器件截面的电场分布仿真图, 其中(c)为正入射模式, (d)为背入射模式(颜色由蓝到红代表电场强度强度由弱到强)

    Figure 5.  (a) Schematic of the Ga2O3 transparent photodetector under front-illumination; (b) schematic under back-illumination mode; simulated electric field distribution in the device cross-section for (c) the front-illumination mode and (d) the back-illumination mode, the color scale from blue to red represents the electric field intensity from low to high.

    图 6  (a) ITO/Ga2O3的能带偏移示意图; (b) 深紫外照射下ITO/Ga2O3/ITO器件的能带结构及载流子传输示意图

    Figure 6.  (a) Schematic illustration of ITO/Ga2O3 band alignment; (b) energy band diagram and carrier transport mechanism of the ITO/Ga2O3/ITO device under deep UV illumination.

    图 7  (a) 深紫外偏振测试系统实物图; (b) 255 nm, 100 μW/cm2紫外光照射下的光电流与偏振角度的极坐标图; (c) 不同光强下, 从0°到360°偏振角的光响应曲线; (d) 偏振比随入射光强的变化关系

    Figure 7.  (a) Photograph of the deep-UV polarization measurement setup; (b) polar plot of photocurrent versus polarization angle under 255 nm, 100 μW/cm2 UV illumination; (c) angular-dependent photoresponse from 0° to 360° at various incident power levels; (d) polarization ratio as a function of incident light intensity.

    图 8  (a) 非视距日盲通信系统的工作原理示意图; (b) 实验装置实物图; (c) 不同发射信号下接收端I-t响应曲线

    Figure 8.  (a) Schematic of the non-line-of-sight solar-blind UV communication system; (b) photograph of the experimental setup; (c) I-t response curves of the receiver for different transmitted signal patterns.

  • [1]

    Guo L, Guo Y N, Wang J X, Wei T B 2021 J. Semicond. 42 081801Google Scholar

    [2]

    Kalra A, Muazzam U U, Muralidharan R, Raghavan S, Nath D N 2022 J. Appl. Phys. 131 150901Google Scholar

    [3]

    Xu Z Y, Sadler M 2008 IEEE Commun. Mag. 46 67

    [4]

    Tan Y F, Qiao Q , Zhao T G , Chang S L , Zhang Z F , Zang J H , Lin C N, Shang Y Y , Yang X, Zhou J W , Yu X , Yu X M , Shan C X 2024 J. Mater. Sci. Technol. 190 200

    [5]

    Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z G, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y, Hao J H 2023 Nat. Commun. 14 418

    [6]

    Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y, Sun H D 2024 Adv. Mater. 36 2405874Google Scholar

    [7]

    Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q, Liu M 2019 Chin. Phys. B 28 018501Google Scholar

    [8]

    Hu Z G, Cheng Q, Zhang T, Zhang Y X, Tian X S, Zhang Y C, Feng Q, Xing W, Ning J, Zhang C F, Zhang J C, Hao Y 2023 J. Lumin. 255 119596Google Scholar

    [9]

    Yang H R, Cheng T H, Xin Q, Liu Y Y, Feng H Y, Luo F, Mu W X, Jia Z T, Tao X T 2023 ACS Appl. Mater. Interfaces 15 32561Google Scholar

    [10]

    Nie Y J, Jiao S J, Yang S, Zhao Y, Gao S Y, Wang D B, Yang X, Li Y F, Fu Z D, Li A M, Wang J Z, Zhao L C 2025 Small 21 2501442Google Scholar

    [11]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [12]

    Zhang Q Y, Dong D M, Zhang T, Zhou T H, Yang Y T, Tang Y J, Shen J Y, Wang T J, Bian T Y, Zhang F, Luo W, Zhang Y, Wu Z P 2023 ACS Nano 17 24033Google Scholar

    [13]

    Lu Y, Miranda C, Tang X, Liu Z Y, Khandelwal V, Krishna S, Li X H 2025 Adv. Mater. 37 2406902Google Scholar

    [14]

    Dong D M, Peng M, Zhang T, Zhang S C, Ma X T, Tang Y J, Cao Y L, Zhang Q Y, Zhang F, Zhang Y, Wu Z P 2025 ACS Photon. 12 3653Google Scholar

    [15]

    Wang Y F, Fu S H, Han Y R, Gao C, Fu R P, Wu Z, Cui W Z, Li B S, Shen A D, Liu Y C 2025 Small 21 e2406989Google Scholar

    [16]

    Chen W C, Xu X Y, Li M H, Kuang S L, Zhang K H, Cheng Q J 2023 Adv. Opt. Mater. 11 2202847Google Scholar

    [17]

    Dang X M, Jiao T, Chen P R, Yu H, Han Y, Li Z, Li Y H, Dong X 2024 Chin. J. Lumin. 45 476Google Scholar

    [18]

    Yan S Q, Jiao T, Ding Z J, Zhou X Y, Ji X Q, Dong X, Zhang J W, Xin Q, Song A M 2023 Adv. Electron. Mater. 9 2300297Google Scholar

    [19]

    Labed M, Park B I, Kim J, Park J H, Min J Y, Hwang H J, Kim J, Rim Y S 2024 ACS Nano 18 6558Google Scholar

    [20]

    Cui M, Xu Y, Sun X Y, Wang Z P, Gong H H, Chen X H, Hu T C, Zhang Y J, Ren F F, Gu S L, Ye J D, Zhang R 2022 J. Phys. D: Appl. Phys. 55 394003Google Scholar

    [21]

    Shen G H, Liu Z, Zhang M L, Guo Y F, Tang W H 2023 IEEE Electron Device Lett. 44 1140Google Scholar

    [22]

    Shen G H, Liu Z, Tan C K, Jiang M M, Li S, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 041103Google Scholar

    [23]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [24]

    王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇 2023 物理学报 72 214202Google Scholar

    Wang L X, Liu Y T, Shi F Y, Qi X W, Shen H, Song Y L, Fang Y 2023 Acta Phys. Sin. 72 214202Google Scholar

    [25]

    Zhang Y Q, Wang Y F, Fu R P, Ma J G, Xu H Y, Li B S, Liu Y C 2022 J. Phys. D: Appl. Phys. 55 324002Google Scholar

    [26]

    Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918Google Scholar

    [27]

    张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志 2024 物理学报 73 098501Google Scholar

    Zhang Y, Liu R W, Zhang J Y, Jiao B B, Wang R Z 2024 Acta Phys. Sin. 73 098501Google Scholar

    [28]

    Kananen B E, Giles N C, Halliburton L E, Foundos G K, Chang K B, Stevens K T 2017 J. Appl. Phys. 122 215703Google Scholar

    [29]

    McCluskey M D 2020 J. Appl. Phys. 127 2002230

    [30]

    Neal A T, Mou S, Rafique S, Zhao H P, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D, Jessen G H 2018 Appl. Phys. Lett. 113 062101Google Scholar

    [31]

    Liu H W, Zhou S R, Zhang H, Ye L J, Xiong Y Q, Yu P, Li W J, Yang X, Li H L, Kong C Y 2022 J. Phys. D: Appl. Phys. 55 305104Google Scholar

    [32]

    许怡红, 范伟航, 王尘 2025 物理学报 74 028104Google Scholar

    Xu Y H, Fan W H, Wang C 2025 Acta Phys. Sin. 74 028104Google Scholar

    [33]

    Huan Y W, Sun S M, Gu C J, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246Google Scholar

    [34]

    Musztyfaga S M, Gawlinska N K, Socha R, Panek P 2023 Materials 16 1363Google Scholar

    [35]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 028104

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501

    [36]

    Zhang Y H, Liang H L, Xing F, Gao Q Q, Feng Y, Sun Y P, Mei Z X 2024 Sci. China Phys. , Mech. Astron. 67 247312Google Scholar

    [37]

    Zhang G, Wang Z Y, Chen S W, Xi Z Y, Wu C, Hu H Z, Liu Z, Wu F M, Wang S L, Fang Z L, Tang W H, Guo D Y 2025 Laser Photonics Rev. 19 e00255Google Scholar

    [38]

    Wu C, Zhang G, Jia J H, Hu H Z, Wu F M, Wang S L, Guo D Y 2024 J. Phys. Chem. Lett. 15 3828Google Scholar

    [39]

    Zhao K, Yang J H, Wang P, Zhou Z Q, Long H R, Xin K Y, Liu C, Han Z, Liu K H, Wei Z M 2024 Adv. Mater. 36 e2406559Google Scholar

    [40]

    Zhong W H, Huang H, Liu Y Q, Jing J W, Wu W T, Liu W Z, Zhao X L, Long S B, Xu H Y 2025 Appl. Phys. Rev. 12 011420Google Scholar

  • [1] XU Yihong, FAN Weihang, WANG Chen. Influence of annealing temperature on the performance of radio frequency magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector. Acta Physica Sinica, doi: 10.7498/aps.74.20240972
    [2] JIAN Jialing, QIAN Keyu, WANG Zijian, SU Yuchen, WENG Zhengjin, XIAO Shaoqing, NAN Haiyan. Research progress of polarization performance of plasmon-enhanced van der Waals photodetectors. Acta Physica Sinica, doi: 10.7498/aps.74.20251165
    [3] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, doi: 10.7498/aps.73.20240267
    [4] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, doi: 10.7498/aps.73.20240186
    [5] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, doi: 10.7498/aps.72.20222222
    [6] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.72.20221476
    [7] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, doi: 10.7498/aps.72.20221716
    [8] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, doi: 10.7498/aps.71.20211536
    [9] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, doi: 10.7498/aps.71.20220859
    [10] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, doi: 10.7498/aps.70.20211039
    [11] Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun. Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector. Acta Physica Sinica, doi: 10.7498/aps.70.20210434
    [12] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, doi: 10.7498/aps.69.20200424
    [13] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, doi: 10.7498/aps.68.20181845
    [14] Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie. A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter. Acta Physica Sinica, doi: 10.7498/aps.65.094201
    [15] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.63.068103
    [16] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, doi: 10.7498/aps.63.116701
    [17] Zhang Xiao-Fu, Li Yu-Dong, Guo Qi, Luo Mu-Chang, He Cheng-Fa, Yu Xin, Shen Zhi-Hui, Zhang Xing-Yao, Deng Wei, Wu Zheng-Xin. 60Coγ-radiation effects on the ideality factor of AlxGa1?xN p-i-n solar-blind detector with high content of aluminum. Acta Physica Sinica, doi: 10.7498/aps.62.076106
    [18] Pan Hui-Ping, Cheng Feng-Feng, Li Lin, Horng Ray-Hua, Yao Shu-De. Structrual analyses of Ga2+xO3-x thin films grown on sapphire substrates. Acta Physica Sinica, doi: 10.7498/aps.62.048801
    [19] Sun Yao, Zhang Chun-Min, Du Juan, Zhao Bao-Chang. A new method of polarization measurement based on the novel polarization interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.59.3863
    [20] Jian Xiao-Hua, Zhang Chun-Min, Zhu Bao-Hui, Zhao Bao-Chang, Du Juan. Polarization measurement using polarization interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.57.7565
Metrics
  • Abstract views:  358
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2025
  • Accepted Date:  20 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回