-
In this work, a special striped water electrodes dielectric barrier discharge device is designed. Through numerical solutions to the Laplace equation, the spatial distribution of the applied electric field is revealed to exhibit a strip-shaped nonuniform distribution, characterized by alternating regions of enhanced and weakened field intensity. These field gradients play a pivotal role in governing the plasma, as the intensified regions act as preferential sites for discharge onset, directly shaping the formation and evolution of plasma structures. Using this device, a series of novel striped patterns are observed in the discharge of a mixed gas of air and argon, marking a significant advancement in pattern formation studies. Notably, four striped superlattice patterns are obtained for the first time, each displaying intricate structural hierarchies. Among these, the large and small dots honeycomb striped superlattice pattern characterized by structural complexity is selected to investigate the formation mechanisms. The pattern is composed of three substructures: small dots, large dots, and a honeycomb framework. In the experiment, the emission spectra of different substructures are measured using a spectrograph, revealing that they are in different plasma states. The spatiotemporal dynamics of the pattern is measured using a high-speed camera and two photomultiplier tubes. It is found that the discharge sequence is small dots→large dots→ honeycomb framework, where the honeycomb framework is formed by the superposition of random discharge filaments. Theoretically, the electric field distributions at different times are simulated by solving the Poisson equation, which well explains the formation mechanism of the abovementioned pattern.
-
Keywords:
- Dielectric barrier discharge /
- Pattern /
- Plasma
-
[1] Kogelschatz, U 2010 J. Phys. Conf. Ser. 257 012015.
[2] Joron M, Jiggins C D, Papanicolaou A, McMillan W O 2006 Heredity 97 157
[3] Werner T, Koshikawa S, Williams T M, Carroll S B 2010 Nature 464 1143
[4] Rogers J L, Schatz M F, Brausch O, Pesch W 2000 Phys. Rev. Lett. 85 4281
[5] Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501
[6] Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Recati A, Ferrari G 2022 Phys. Rev. Lett. 128 210401
[7] Frumkin V, Gokhale S 2023 Phy. Rev. E 108 L012601
[8] Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309
[9] Kameke A V, Huhn F, Muñuzuri A P, Muñuzuri V P 2013 Phys. Rev. Lett. 110 088302
[10] Dong L F, He Y F, Yin Z Q, Chai Z F 2004 Plasma Sources Sci. Technol. 13 164.
[11] Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817
[12] Zhang B, Zhang X B, Wu S Q 2024 J. Appl. Phys. 136 12
[13] Peng B F, Wang R Z, Li J, Jiang N, Yuan D K, Chen Z Q, Lei Z P, Kang A L and Song J C 2024 Appl. Phys. Lett. 125 144102
[14] Peng B F, Jiang N, Zhu Y F, Li J and Wu Y 2024 Plasma Sources Sci. Technol. 33 045018
[15] Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P and Song J C 2024 Phys. Fluids 36 037144
[16] Liu Q J, You M, Wang J M, Chen Y Y, Guo Z H, Zhu S S and Wu S Q 2024 IEEE Trans. Plasma Sci. 52 8
[17] Li J F, Yao J F, Wang Ying, Zhou Z X, Lan Z H, Yuan C X 2024 Adv. Opt. Mater. 12 17
[18] Wang R G, Li B, Zhang T K, Ouyang J T and Sun Y R 2020 Plasma Sci. Technol. 22 085002
[19] Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514
[20] Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L Dong L F 2022 Plasma Sources Sci. Technol. 31 025015
[21] Dong L F, Li Y H, Yan Z H, He Y N, Li C and Pan Y Y 2025 Chaos Soliton Fractals 200 117023
[22] Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S and Pan Y Y 2025 Opt. Express 33 37246
[23] Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101
[24] Ongrak P, Poolyarat N, Suksaengpanomrung S, Saidarasamoot K, Jirakiattikul Y, Rithichai P 2023 Horticulturae 9 1269
[25] Kim S J, Kim S, Son B K, Lee K H, Park B J, Cho G 2020 J. Korean Phys. Soc. 77 572
[26] Fan W L, Hou X H, Tian M, Gao K Y, He Y F, Yang Y X, Liu Q, Yao J F, Liu F C, Yuan C X 2022 Plasma Sci. Technol. 24 015402
[27] Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905
[28] Ouyang J T, Duan X X, Xu S W, He F 2012 Chin. Phys. Lett. 29 025201
[29] Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202
[30] Dong L F, Xiao H, Fan W L, Zhao H T, Yue H 2010 IEEE Trans. Plasma Sci. 38 2486
[31] Dong L F, Li B, Lu N, Li X C, Shen Z K, 2012 Phys. Plasmas 19 052304
[32] Dong L F, Li B, Shen Z K, Wang Y J, Lu N, 2012 Phys. Rev. E 86 036211
[33] Dong L F, Liu B B, Li C X, Pan Y Y 2019 Phys. Rev. E 100 063201
[34] Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2
[35] Li C X, Feng J Y, Wang S C, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci. Technol. 26 085401
[36] Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504
[37] Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005
[38] Liu W B, Wang Y J, Zhang H, Pan Y Y, Dong L F 2016 Rev. Sci. Instrum. 87 056101
[39] Chu J H, Dong L F, Tian M, Li Y H, He Y N, Zhang J H, Pan Y Y 2024 Sci. China- Phys. Mech. Astron. 54 245212 (in Chinese) [褚佳惠, 董丽芳, 田淼, 李耀华, 贺玉楠, 张建华, 潘宇扬 2024 中国科学: 物理学、力学、天文学 54 245212]
[40] Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301
[41] Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015
[42] Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501
[43] Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502
[44] Feng J Y, Pan Y Y, Li C X, Liu B B and Dong L F 2020 Phys. Plasmas 27 063516
[45] Wang Y F, Wang L, Guo D, Fan X L, Harati J, Huang H, Chen P F, Chen X G, Guo T L, Weng J and Deng K 2025 Chem. Eng. Sci. 311 121537
[46] Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601
Metrics
- Abstract views: 84
- PDF Downloads: 1
- Cited By: 0