Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Novel Method for Measuring Nanowire-Substrate Interface Adhesion Energy in Ambient Atmosphere: Cross-Stacked Arch Testing

LI Jinkai SONG Xiaodong HOU Lizhen WANG Shiliang

Citation:

A Novel Method for Measuring Nanowire-Substrate Interface Adhesion Energy in Ambient Atmosphere: Cross-Stacked Arch Testing

LI Jinkai, SONG Xiaodong, HOU Lizhen, WANG Shiliang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Adhesion at the nanowire–substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy or in situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To address these issues, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which enables direct and quantitative measurement of nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby enabling reliable measurement. Using this method, we measured the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yielded an adhesion energy of 0.154 ± 0.030 J/m2, in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si (0.120 ± 0.034 J/m2) and ZnS/Si (0.192 ± 0.043 J/m2) were significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. Beyond nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
  • [1]

    Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175

    [2]

    Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025

    [3]

    Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407

    [4]

    Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965

    [5]

    Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801 (in Chinese) [段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 物理学报 73 056801]

    [6]

    Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550

    [7]

    He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661

    [8]

    Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884

    [9]

    Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131

    [10]

    Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347

    [11]

    Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934

    [12]

    Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571

    [13]

    Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001

    [14]

    Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39

    [15]

    Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251

    [16]

    Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236

    [17]

    Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023

    [18]

    Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636

    [19]

    Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074

    [20]

    Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519

    [21]

    He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502

    [22]

    Mastrangelo C 1997 Tribol. Lett. 3 223

    [23]

    Israelachvili J N 2010 Intermolecular and surface forces (London(UK): Academic Press)

    [24]

    Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592

    [25]

    Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237

    [26]

    Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802

    [27]

    Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304

    [28]

    Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410

    [29]

    Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601

    [30]

    Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216

    [31]

    Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544

    [32]

    Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124

    [33]

    Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651

    [34]

    Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038

    [35]

    Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103

    [36]

    Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705

    [37]

    Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001

    [38]

    Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22-25, 1992 p208

    [39]

    DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629

    [40]

    DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104

    [41]

    Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138

    [42]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [43]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175

    [44]

    Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125

  • [1] YIN Xuetong, LIAO Dunyuan, PAN Dong, WANG Peng, LIU Bingbing. Room-temperature photoluminescence in GaAsSb nanowires under high-pressure. Acta Physica Sinica, doi: 10.7498/aps.74.20250042
    [2] Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui. Surface effects on buckling of nanowire electrode. Acta Physica Sinica, doi: 10.7498/aps.71.20211864
    [3] Gao Feng-Ju. Calculation of coherent X-ray diffraction from bent Cu nanowires. Acta Physica Sinica, doi: 10.7498/aps.64.138102
    [4] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, doi: 10.7498/aps.62.186501
    [5] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, doi: 10.7498/aps.61.208501
    [6] Zhou Guo-Rong, Teng Xin-Ying, Wang Yan, Geng Hao-Ran, Hur Bo-Young. Size effect on the freezing behavior of aluminum nanowires. Acta Physica Sinica, doi: 10.7498/aps.61.066101
    [7] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, doi: 10.7498/aps.60.038501
    [8] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, doi: 10.7498/aps.60.127503
    [9] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, doi: 10.7498/aps.58.7781
    [10] Xu Zhen-Hai, Yuan Lin, Shan De-Bin, Guo Bin. Atomistic simulation of yield mechanism of single crystal copper nanowires. Acta Physica Sinica, doi: 10.7498/aps.58.4835
    [11] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.57.4347
    [12] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.56.1499
    [13] Yang Jiong, Zhang Wen-Qing. Structural stability of Se and Te nanowires. Acta Physica Sinica, doi: 10.7498/aps.56.4017
    [14] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, doi: 10.7498/aps.56.6616
    [15] Qing Tao, Shao Tian-Min, Wen Shi-Zhu. Analysis of adhesion process between material surfaces. Acta Physica Sinica, doi: 10.7498/aps.56.1555
    [16] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, doi: 10.7498/aps.55.6136
    [17] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, doi: 10.7498/aps.55.891
    [18] Li Zhi-Jie, Pan Xue-Ling, Sun Wei-Min, Qu Jia-Hui, Wang Fu. Production and character of Al3O3N nanowires. Acta Physica Sinica, doi: 10.7498/aps.54.450
    [19] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, doi: 10.7498/aps.54.384
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  71
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  24 September 2025
  • /

    返回文章
    返回