-
Nanowire-based electrodes have attracted much attention due to their high surface energy, short distance for lithium insertion, and the ability to accommodate the enormous strain. However, the buckling behavior may occur during lithiation for such wire-like electrodes, which would lead the battery performance to deteriorate. Therefore, it is vital to quantitatively understand the mechanism about the bucking behavior of the nanowire-based electrodes. Although the buckling behavior of wire-like electrode has been extensively studied in the past few decades, the influence of surface effect on it has not yet been thoroughly explored. For this purpose, a theoretical model of surface effects on buckling of nanowire electrode is presented by taking into account the lithium diffusion, stress, and concentration-dependent elastic properties. Based on the established model, the effects of the residual surface tension and elastic hardening/softening coefficients on buckling are investigated. The results show that surface effects can improve the mechanical reliability, thus delaying the critical buckling time of nanowire electrode. In addition, it is indicated that the surface effects depend on the radius size and slenderness ratio of the nanowire electrode, specifically, the smaller the radius size and the larger the slenderness ratio, the greater the influence of the surface effect is. Furthermore, compared with elastic hardening, with the participation of surface effects, the larger the elastic softening coefficient, the longer it takes for the nanowire electrode to reach the buckled state, and the better the stability of the electrode is. The novelty of this work is that the proposed models highlight the importance of surface effects on buckling of nanowire electrode. These findings provide a prospective insight into the designing of higher structural reliability of electrode.
-
Keywords:
- surface effects /
- lithium-ion batteries /
- nanowire /
- buckling
[1] Larcher D, Tarascon J 2015 Nat. Chem. 7 19Google Scholar
[2] Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar
[3] Zhang S, Zhao K, Zhu T, Li J 2017 Prog. Mater. Sci. 89 479Google Scholar
[4] Gür T 2018 Energy Environ. Sci. 11 2696Google Scholar
[5] Edge J, O’Kane S, Prosser R, Kirkaldy N, Patel A, Hales A, Ghosh A, Ai W, Chen J, Yang J, Li S, Pang M, Bravo D, Tomaszewska A, Marzook M, Radhakrishnan K, Wang H, Patel Y, Wu B, Offer G 2021 Phys. Chem. Chem. Phys. 23 8200Google Scholar
[6] Zhang W 2011 J. Power Sources 196 13Google Scholar
[7] Chan C, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y 2008 Nat. Nanotechnol. 3 31Google Scholar
[8] Yu C, Li X, Ma T, Rong J, Zhang R, Shaffer J, An Y, Liu Q, Wei B, Jiang H 2012 Adv. Energy Mater. 2 68Google Scholar
[9] Yao Y, McDowell M, Ryu I, Wu H, Liu N, Hu L, Nix W, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[10] Kim H, Han B, Choo J, Cho J 2008 Angew. Chem. 120 10305Google Scholar
[11] Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R, Yang P 2014 Adv. Mater. 26 2137Google Scholar
[12] Chen L, Lu N, Xu C, Yu H, Wang T 2009 Electrochim. Acta 54 4198Google Scholar
[13] Chan C, Zhang X, Cui Y 2008 Nano Lett. 8 307Google Scholar
[14] Liu, X, Fan F, Yang H, Zhang S, Huang J, Zhu T 2013 ACS Nano 7 1495Google Scholar
[15] Huang J, Li Z, Chong M, John P, Wu X, Li Q, Scott X, Nicholas S, Xiao H, Arunkumar S 2010 Science 330 1515Google Scholar
[16] Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Beng C, Mao S, Zhu T, Xia S 2015 Nat. Commun. 6 8417Google Scholar
[17] Chakraborty J, Please C, Goriely A, Chapman S 2015 Int. J. Solids Struct. 54 66Google Scholar
[18] Zhang K, Li Y, Wu J, Zheng B, Yang F 2018 Int. J. Solids Struct. 144 289Google Scholar
[19] Shen X, Wan Y 2021 Meccanica 1 1Google Scholar
[20] Li Y, Zhang K, Zheng B, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602Google Scholar
[21] Zhang K, Chen J, Li Y, Liu D, Zheng B, Kai Y 2020 Results Phys. 16 103018Google Scholar
[22] Li Y, Mao W, Zhang K, Jia Y, Yang F 2019 J. Phys. D: Appl. Phys. 52 435502Google Scholar
[23] Zhang Y, Zhan S, Zhang K, Zheng B, Lyu L 2021 Eur. J. Mech. A/Solids 85 104111Google Scholar
[24] Xing H, Liu Y, Wang B 2019 Acta Mech. 230 4145Google Scholar
[25] Yeerella R, Boddeda H, Sengupta A, Chakraborty J 2020 J. Appl. Phys. 128 234901Google Scholar
[26] Herring C 1951 Phys. Rev. 82 87Google Scholar
[27] Gurtin M, Murdoch A 1975 Arch. Ration. Mech. Anal. 57 291Google Scholar
[28] Miller R, Shenoy V 2000 Nanotechnology 11 139Google Scholar
[29] Cammarata R 1994 Prog. Surf. Sci. 46 1Google Scholar
[30] Cheng Y, Verbrugge M 2008 J. Appl. Phys. 104 083521Google Scholar
[31] Deshpande R, Cheng Y, Verbrugge M 2010 J. Power Sources 195 5081Google Scholar
[32] Hao F, Gao X, Fang D 2012 J. Appl. Phys. 112 103507Google Scholar
[33] Sengupta A, Chakraborty J 2019 Acta Mech. 231 999Google Scholar
[34] Gao Y, Zhou M 2011 J. Appl. Phys. 109 014310Google Scholar
[35] Gao X, Fang D, Qu J 2015 Proc. R. Soc. London, Ser. A 471 20150366Google Scholar
[36] Jia N, Peng Z, Wang S, Li J, Yao Y, Chen S 2020 Sci. China Ser. E: Technol. Sci. 63 2413Google Scholar
[37] Zhang X, Chen H, Fang D 2020 Int. J. Mech. Sci. 169 105323Google Scholar
[38] Stein P, Zhao Y, Xu B 2016 J. Power Sources 332 154Google Scholar
[39] Bucci G, Swamy T, Bishop S, Sheldon B, Chiang Y, Carter W 2017 J. Electrochem. Soc. 164 A645Google Scholar
[40] Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar
[41] Young S, Ji L, Chang S, Fang T, Hsueh T, Meen T, Chen I 2007 Nanotechnology 18 225603Google Scholar
[42] Riaz M, Nur O, Willander M, Klason P 2008 Appl. Phys. Lett. 92 103118Google Scholar
[43] Wang G, Feng X 2009 Appl. Phys. Lett. 94 141913Google Scholar
[44] Shenoy V, Johari P, Qi Y 2010 J. Power Sources 195 6825Google Scholar
[45] Qi Y, Guo H, Hector J, L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar
[46] Qi Y, Hector L, James C, Kim K 2014 J. Electrochem. Soc. 161 F3010Google Scholar
[47] Swaminathan N, Balakrishnan S, George K 2015 J. Electrochem. Soc. 163 A488Google Scholar
[48] Sharma P, Ganti S, Bhate N 2003 Appl. Phys. Lett. 82 535Google Scholar
[49] Zhang X, Shyy W, Marie S 2007 J. Electrochem. Soc. 154 A910Google Scholar
[50] Tian L, Rajapakse R 2007 Int. J. Solids Struct. 44 7988Google Scholar
[51] He L, Li Z 2006 Int. J. Solids Struct. 43 6208Google Scholar
[52] Wang S, Li X, Yi X, Duan H 2021 Extreme Mech. Lett. 44 101211Google Scholar
[53] Wang G, Feng X 2007 Appl. Phys. Lett. 90 231904Google Scholar
[54] He J, Lilley C 2008 Nano Lett. 8 1798Google Scholar
[55] Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar
[56] Zhang K, Li Y, Zheng B, Wu G, Wu J, Yang F 2017 Int. J. Solids Struct. 108 230Google Scholar
[57] Lee S, McDowell M, Berla L, Nix W, Cui Y 2012 Proc. Natl. Acad. Sci. U. S. A. 109 4080Google Scholar
-
图 2 临界屈曲压力的结果 (a)临界屈曲压力随时间的变化情况, 其中实线表示考虑了表面效应, 点虚线表示没有考虑表面效应, 且红色线表示弹性硬化(
$ k=0.5 $ ), 靛蓝色线表示无弹性硬化/软化($ k=0 $ ), 黑色线表示弹性软化($ k=-0.5 $ ); (b)有表面效应与无表面效应的初始临界屈曲压力之比随电极半径的变化情况; (c)有表面效应与无表面效应的初始临界屈曲压力之比随电极长细比的变化情况Figure 2. Results of critical buckling load: (a) Evolution of critical buckling load with time (The solid lines represent considering the surface effect, dotted lines represent without considering the surface effect, and red lines denote
$ k=0.5 $ , indigo lines denote$ k=0 $ , black lines denote$ k=-0.5 $ ); (b) ratio of initial critical buckling load between with and without surface effect as a function of radius; (c) ratio of initial critical buckling load between with and without surface effect as a function of slenderness ratio.图 3 纳米线电极轴力的结果 (a)轴力随时间的变化情况, 其中实线表示考虑了表面效应, 点虚线表示没有考虑表面效应, 且红色线表示弹性硬化(
$ k=0.5 $ ), 靛蓝色线表示无弹性硬化/软化($ k=0 $ ), 黑色线表示弹性软化($ k=-0.5 $ ); (b) 初始轴力随纳米线电极半径的变化情况Figure 3. Results of axial force
$ {\stackrel{~}{F}}_{z} $ : (a) Variation of axial force$ {\stackrel{~}{F}}_{z} $ with time$ \stackrel{~}{t} $ (The solid lines represent considering the surface effect, dotted lines represent without considering the surface effect, and red lines denote$ k=0.5 $ , indigo lines denote$ k=0 $ , black lines denote$ k=-0.5 $ ); (b) initial axial force with surface effect as a function of radius图 4 纳米线电极屈曲的结果情况 (a)有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极长细比下随时间的变化情况; (b)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极长细比下随时间的变化情况; (c)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极长细比的变化情况; (d)有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极尺寸下随时间的变化情况; (e)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极尺寸下随时间的变化情况; (f)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极尺寸的变化情况
Figure 4. Results of nanowire electrode buckling: (a) Under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different slenderness ratio; (b) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different slenderness ratio; (c) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with slenderness ratio; (d) under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different radius; (e) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different radius; (f) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with radius.
图 5 弹性硬化/软化系数对屈曲的影响 (a)在有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极弹性硬化/软化系数下随时间的变化情况; (b)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极弹性硬化/软化系数下随时间的变化情况; (c)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极弹性硬化/软化系数的变化情况
Figure 5. Effect of elastic hardening/softening coefficient on buckling: (a) Under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different hardening/softening coefficient; (b) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different hardening/softening coefficient; (c) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with hardening/softening coefficient.
表 1 材料参数
Table 1. Material parameters[55].
物理参数 符号/单位 值 未锂化的弹性模量 $ {E}_{0} $/GPa 70 泊松比 v 0.2 偏摩尔体积 $\varOmega /({\mathrm{m} }^{3}{\cdot}{\mathrm{m}\mathrm{o}\mathrm{l} }^{-1})$ 1.92 × 10–6 锂的最大浓度 ${c}_{\mathrm{m} }/(\mathrm{m}\mathrm{o}\mathrm{l}{\cdot} {\mathrm{m} }^{-3})$ 2.33 × 104 扩散系数 ${D}_{0}/({\mathrm{m} }^{2}{\cdot} {\mathrm{s} }^{-1})$ 1.76 × 10–15 表面残余张力 $\tau /(\mathrm{J}{\cdot}{\mathrm{m} }^{-2})$ 2 长细比 $ {l}_{0}/{r}_{0} $ 50 电极半径尺寸 $ {r}_{0} $/nm 10 -
[1] Larcher D, Tarascon J 2015 Nat. Chem. 7 19Google Scholar
[2] Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar
[3] Zhang S, Zhao K, Zhu T, Li J 2017 Prog. Mater. Sci. 89 479Google Scholar
[4] Gür T 2018 Energy Environ. Sci. 11 2696Google Scholar
[5] Edge J, O’Kane S, Prosser R, Kirkaldy N, Patel A, Hales A, Ghosh A, Ai W, Chen J, Yang J, Li S, Pang M, Bravo D, Tomaszewska A, Marzook M, Radhakrishnan K, Wang H, Patel Y, Wu B, Offer G 2021 Phys. Chem. Chem. Phys. 23 8200Google Scholar
[6] Zhang W 2011 J. Power Sources 196 13Google Scholar
[7] Chan C, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y 2008 Nat. Nanotechnol. 3 31Google Scholar
[8] Yu C, Li X, Ma T, Rong J, Zhang R, Shaffer J, An Y, Liu Q, Wei B, Jiang H 2012 Adv. Energy Mater. 2 68Google Scholar
[9] Yao Y, McDowell M, Ryu I, Wu H, Liu N, Hu L, Nix W, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[10] Kim H, Han B, Choo J, Cho J 2008 Angew. Chem. 120 10305Google Scholar
[11] Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R, Yang P 2014 Adv. Mater. 26 2137Google Scholar
[12] Chen L, Lu N, Xu C, Yu H, Wang T 2009 Electrochim. Acta 54 4198Google Scholar
[13] Chan C, Zhang X, Cui Y 2008 Nano Lett. 8 307Google Scholar
[14] Liu, X, Fan F, Yang H, Zhang S, Huang J, Zhu T 2013 ACS Nano 7 1495Google Scholar
[15] Huang J, Li Z, Chong M, John P, Wu X, Li Q, Scott X, Nicholas S, Xiao H, Arunkumar S 2010 Science 330 1515Google Scholar
[16] Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Beng C, Mao S, Zhu T, Xia S 2015 Nat. Commun. 6 8417Google Scholar
[17] Chakraborty J, Please C, Goriely A, Chapman S 2015 Int. J. Solids Struct. 54 66Google Scholar
[18] Zhang K, Li Y, Wu J, Zheng B, Yang F 2018 Int. J. Solids Struct. 144 289Google Scholar
[19] Shen X, Wan Y 2021 Meccanica 1 1Google Scholar
[20] Li Y, Zhang K, Zheng B, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602Google Scholar
[21] Zhang K, Chen J, Li Y, Liu D, Zheng B, Kai Y 2020 Results Phys. 16 103018Google Scholar
[22] Li Y, Mao W, Zhang K, Jia Y, Yang F 2019 J. Phys. D: Appl. Phys. 52 435502Google Scholar
[23] Zhang Y, Zhan S, Zhang K, Zheng B, Lyu L 2021 Eur. J. Mech. A/Solids 85 104111Google Scholar
[24] Xing H, Liu Y, Wang B 2019 Acta Mech. 230 4145Google Scholar
[25] Yeerella R, Boddeda H, Sengupta A, Chakraborty J 2020 J. Appl. Phys. 128 234901Google Scholar
[26] Herring C 1951 Phys. Rev. 82 87Google Scholar
[27] Gurtin M, Murdoch A 1975 Arch. Ration. Mech. Anal. 57 291Google Scholar
[28] Miller R, Shenoy V 2000 Nanotechnology 11 139Google Scholar
[29] Cammarata R 1994 Prog. Surf. Sci. 46 1Google Scholar
[30] Cheng Y, Verbrugge M 2008 J. Appl. Phys. 104 083521Google Scholar
[31] Deshpande R, Cheng Y, Verbrugge M 2010 J. Power Sources 195 5081Google Scholar
[32] Hao F, Gao X, Fang D 2012 J. Appl. Phys. 112 103507Google Scholar
[33] Sengupta A, Chakraborty J 2019 Acta Mech. 231 999Google Scholar
[34] Gao Y, Zhou M 2011 J. Appl. Phys. 109 014310Google Scholar
[35] Gao X, Fang D, Qu J 2015 Proc. R. Soc. London, Ser. A 471 20150366Google Scholar
[36] Jia N, Peng Z, Wang S, Li J, Yao Y, Chen S 2020 Sci. China Ser. E: Technol. Sci. 63 2413Google Scholar
[37] Zhang X, Chen H, Fang D 2020 Int. J. Mech. Sci. 169 105323Google Scholar
[38] Stein P, Zhao Y, Xu B 2016 J. Power Sources 332 154Google Scholar
[39] Bucci G, Swamy T, Bishop S, Sheldon B, Chiang Y, Carter W 2017 J. Electrochem. Soc. 164 A645Google Scholar
[40] Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar
[41] Young S, Ji L, Chang S, Fang T, Hsueh T, Meen T, Chen I 2007 Nanotechnology 18 225603Google Scholar
[42] Riaz M, Nur O, Willander M, Klason P 2008 Appl. Phys. Lett. 92 103118Google Scholar
[43] Wang G, Feng X 2009 Appl. Phys. Lett. 94 141913Google Scholar
[44] Shenoy V, Johari P, Qi Y 2010 J. Power Sources 195 6825Google Scholar
[45] Qi Y, Guo H, Hector J, L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar
[46] Qi Y, Hector L, James C, Kim K 2014 J. Electrochem. Soc. 161 F3010Google Scholar
[47] Swaminathan N, Balakrishnan S, George K 2015 J. Electrochem. Soc. 163 A488Google Scholar
[48] Sharma P, Ganti S, Bhate N 2003 Appl. Phys. Lett. 82 535Google Scholar
[49] Zhang X, Shyy W, Marie S 2007 J. Electrochem. Soc. 154 A910Google Scholar
[50] Tian L, Rajapakse R 2007 Int. J. Solids Struct. 44 7988Google Scholar
[51] He L, Li Z 2006 Int. J. Solids Struct. 43 6208Google Scholar
[52] Wang S, Li X, Yi X, Duan H 2021 Extreme Mech. Lett. 44 101211Google Scholar
[53] Wang G, Feng X 2007 Appl. Phys. Lett. 90 231904Google Scholar
[54] He J, Lilley C 2008 Nano Lett. 8 1798Google Scholar
[55] Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar
[56] Zhang K, Li Y, Zheng B, Wu G, Wu J, Yang F 2017 Int. J. Solids Struct. 108 230Google Scholar
[57] Lee S, McDowell M, Berla L, Nix W, Cui Y 2012 Proc. Natl. Acad. Sci. U. S. A. 109 4080Google Scholar
Catalog
Metrics
- Abstract views: 4509
- PDF Downloads: 58
- Cited By: 0