Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Technique of TiNi-based shape memory alloy thin film coating on optical fibers

Dang Jun-Po Jiang Xiu-Juan Tang Zhen-Hua

Citation:

Technique of TiNi-based shape memory alloy thin film coating on optical fibers

Dang Jun-Po, Jiang Xiu-Juan, Tang Zhen-Hua
PDF
HTML
Get Citation
  • Intelligent, integrated and cost-effective micro-electro-mechanical system (MEMS) and micro sensors can be developed with TiNi-based memory alloy thin film and optical fibers. Such devices can work in harsh environment, like in deep sea, in space with flammable or explosive objects, or with strong electromagnetic interference; and examples of their possible applications include gas concentration detection in underground mines, dynamic detection of production parameters in oil or gas mining, etc. As TiNi-based memory alloy thin film possesses good biocompatibility, such devices can also be used in intracranial/endocardial pressure test, surgical resection, early cancer assessment, etc. The successful development of the above MEMS and micro sensors involve optical fibers coated with memory alloy films. However, unlike the common planar substrates, optical fiber is of a cylinder with a small diameter, and how to grow good-quality memory alloy film on its surface remains to be explored.In this work, the silica fibers are coated with TiNi memory alloy films by magnetron sputtering. How to choose the proper operating parameters in the sputtering process, and also the effects of subsequent annealing treatment on the films, are discussed in detail. Uniform thin films are grown on the 125-μm-diameter cylindrical surfaces of optical fibers with our built coating mask device specially designed for fibers. The experiments show that when target-substrate distance, background vacuum degree, Ar gas flow and sputtering time are fixed in the sputtering process, the sputtering power can be optimized, while a higher sputtering pressure results in lower film deposition rate but better surface roughness. The thin film is well crystallized under annealing, and the major martensite B19′ phase and minor austenite B2 phase coexist in the Ti49.09Ni50.91 film. In the experiments, with the optimal operating parameters (sputtering power of 150 W and sputtering pressure of 0.23 Pa), TiNi memory alloy film about 852.2 nm in thickness is grown on the fiber at a deposition rate of 0.118 nm/s, and surface root mean square roughness of the unannealed film is 15.1 nm. Annealing at temperatures of 500, 550 and 600 ℃ are respectively tried, and such a thermal treatment evidently refines the crystalline grains inside the film. Surface root mean square roughness of the film annealed at 600 ℃ is reduced to 6.32 nm.This work indicates that a glass fiber can be coated with high-quality TiNi-based memory alloy film, and it thus forms a part of the bases of further development of relevant MEMS and micro sensors.
      Corresponding author: Jiang Xiu-Juan, jiangxj@gdut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2019A1515011229, 2018A030313315)
    [1]

    Han S P, Meng Z, Omisore O M, Akinyemi T, Yan Y P 2020 Micromachines 11 1021Google Scholar

    [2]

    解甜, 王传礼, 喻曹丰 2019 微电机 52 72Google Scholar

    Xie T, Wang C L, Yu C F 2019 Micromotors 52 72Google Scholar

    [3]

    吴建生, 吴晓东, 王征 1997 材料研究学报 5 449

    Wu J S, Wu X D, Wang Z 1997 Chin. J. Mater. Res. 5 449

    [4]

    Tan C L, Liu J, Tian X H, Zhu J C, Zhang K 2021 Results Phys. 24 104165Google Scholar

    [5]

    曲炳郡, 刘晓鹏 2002 中国机械工程 13 35

    Qu B J, Liu X P 2002 China Mechanical Engineering 13 35

    [6]

    Fu Y, Du H, Huang W, Zheng S, Min H 2004 Sens. Actuators, A 112 395Google Scholar

    [7]

    Anna M, Vijaya T, Sudha J, Anantha P, Vladimir S 2018 Defect Diffus. Forum 4695 169Google Scholar

    [8]

    Gunther V, Marchenko E, Baigonakova G 2017 Mater. Today 4 4727Google Scholar

    [9]

    Im Y M, Noh J P, Cho G B, Nam T H 2018 Shape Mem. Superelast. 4 121Google Scholar

    [10]

    Nagasaki Y, Gholipour B, Ou J Y, Tsuruta M, Plum E, MacDonald K F, Takahara J, Zheludev N I 2018 Appl. Phys. Lett. 113 021105Google Scholar

    [11]

    Knick C R, Smith G L, Morris C J, Bruck H A 2019 Sens. Actuators, A 291 48Google Scholar

    [12]

    吴佩泽, 贺志荣, 李自源, 刘康凯, 王家乐 2017 热加工工艺 46 10Google Scholar

    Wu P Z, He Z R, Li Z Y, Liu K K, Wang J L 2017 Hot Working Technology 46 10Google Scholar

    [13]

    蒋建军, 胡毅, 陈星, 等 2018 材料工程 46 1Google Scholar

    Jiang J J, Hu Y, Chen X, et al. 2018 J. Mater. Engineer. 46 1Google Scholar

    [14]

    刘兵飞, 刘亚冬, 张亚楠 2021 复合材料学报 38 1177Google Scholar

    Liu B F, Liu Y D, Zhang Y N 2021 Acta Mater. Compos. Sin. 38 1177Google Scholar

    [15]

    Zhu J N, Zeng Q F, Fu T 2019 Corros. Rev. 37 539Google Scholar

    [16]

    崔俊龙, 江秀娟 2020 CN111349886A

    Cui J L, Jiang X J 2020 CN111349886A (in Chinese)

    [17]

    Kim D, Lee H, Bae J, Hyomin C, Byeongkeun N, Taehyun N 2018 J. Nanosci. Nanotechnol. 18 6201Google Scholar

    [18]

    邱清泉, 励庆孚, 苏静静, Jim F 2009 真空科学与技术学报 29 46Google Scholar

    Qiu Q Q, Li Q F, Su J J, Jim F 2009 Chin. J. Vacuum Sci. Technol. 29 46Google Scholar

    [19]

    窦军 2013 硕士学位论文 (长春: 吉林大学)

    Dou J 2013 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [20]

    王利民 2008 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Wang L M 2008 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese)

    [21]

    Otsuka K, Ren X 1999 Intermetallics 7 511Google Scholar

    [22]

    刘晓鹏 2002 博士学位论文 (大连: 大连理工大学)

    Liu X P 2002 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [23]

    Fu Y Q, Du H J, Zhang S, Gu Y W 2005 Surf. Coat. Tech. 198 389Google Scholar

    [24]

    李艳锋, 米绪军, 尹向前, 高宝东 2011 材料热处理学报 32 11Google Scholar

    Li Y F, Mi X J, Yi X Q, Gao B D 2011 T. Mater. Heat Treat. 32 11Google Scholar

    [25]

    于孟, 薛飒, 贾兵然, 毛江虹, 牛中杰 2016 稀有金属 40 877Google Scholar

    Yu M, Xue S, Jia B R, Mao J H, Niu Z J 2016 Chin. J. Rare Metals 40 877Google Scholar

    [26]

    Zhang L, Xie C, Wu J 2007 Mater. Charact. 58 471Google Scholar

    [27]

    踪敬珍 2017 硕士学位论文 (上海: 上海交通大学)

    Zong J Z 2017 M. S. Thesis (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [28]

    林福柱 2012 硕士学位论文 (长春: 吉林大学)

    Lin F Z 2012 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [29]

    Zhang L, Xie C J, Wu J S 2007 J. Alloys Compd. 427 238Google Scholar

    [30]

    Sanjabi S, Sadrnezhaad S K, Yates K A, Barber Z H 2005 Thin Solid Films 419 190Google Scholar

    [31]

    徐娇, 寇生中, 赵燕春, 袁小鹏, 李春燕 2014 稀有金属 38 641Google Scholar

    Xu J, Kou S Z, Zhao Y C, Yuan X P, Li C Y 2014 Chin. J. Rare Metals 38 641Google Scholar

    [32]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511Google Scholar

    [33]

    Entemeyer D, Patoor E, Eberhardt A, Berveiller M 2000 Int. J. Plasticity 16 1269Google Scholar

    [34]

    Kumar A, Kannan M D, Jayakumar S, Rajam K S, Raju V S 2006 Surf. Coat. Tech. 201 3253Google Scholar

  • 图 1  薄膜制备工艺流程

    Figure 1.  Preparation process of the thin film.

    图 2  光纤基底的清洗工艺

    Figure 2.  Cleaning process of optical fiber substrate.

    图 3  记忆合金薄膜相变示意图

    Figure 3.  Schematic diagram of phase transition of memory alloy thin film.

    图 4  TiNi薄膜沉积速率与溅射功率的关系曲线

    Figure 4.  Deposition rate of TiNi thin film against sputtering power.

    图 5  溅射压强与薄膜沉积速率的关系曲线

    Figure 5.  Deposition rate of TiNi thin film against sputtering pressure.

    图 6  不同溅射压强下的TiNi薄膜表面二维形貌(溅射功率为150 W) (a) 0.12 Pa; (b) 0.17 Pa; (c) 0.23 Pa; (d) 0.37 Pa

    Figure 6.  Two-dimensional surface topography of TiNi thin films under different sputtering pressures (the sputtering power is 150 W): (a) 0.12 Pa; (b) 0.17 Pa; (c) 0.23 Pa; (d) 0.37 Pa.

    图 7  不同溅射压强下的TiNi薄膜表面三维形貌图(溅射功率为150 W) (a) 0.12 Pa; (b) 0.17 Pa; (c) 0.23 Pa; (d) 0.37 Pa

    Figure 7.  Three-dimensional surface topography of TiNi thin films under different sputtering pressures (the sputtering power is 150 W): (a) 0.12 Pa; (b) 0.17 Pa; (c) 0.23 Pa; (d) 0.37 Pa.

    图 8  不同退火温度下TiNi薄膜表面二维形貌图(薄膜的溅射功率为150 W, 溅射压强为0.23 Pa) (a)未退火; (b) 500 ℃; (c) 550 °C; (d) 600 ℃

    Figure 8.  Surface morphology of TiNi thin films annealed at different temperatures: (a) Unannealed; (b) 500 ℃; (c) 550 ℃; (d) 600 ℃. The films are fabricated under the sputtering power of 150 W and the sputtering pressure of 0.23 Pa.

    图 9  不同退火温度下TiNi薄膜表面三维形貌图 (a)未退火; (b) 500 ℃; (c) 550 ℃; (d) 600 ℃

    Figure 9.  Three-dimensional surface topography of TiNi thin films annealed at different temperatures: (a) Unannealed; (b) 500 ℃; (c) 550 ℃; (d) 600 ℃.

    图 10  TiNi薄膜剖面图 (a)退火前; (b) 550 ℃退火后

    Figure 10.  Surface profile of TiNi thin films: (a) Unannealed; (b) annealed at 550 ℃.

    图 11  二氧化硅光纤上制备成的TiNi薄膜, 光纤包层直径为125 μm

    Figure 11.  TiNi film on the silica fiber, where the cladding diameter of the fiber is 125 μm.

    图 12  TiNi薄膜能谱图

    Figure 12.  Energy spectrum of TiNi thin film.

    图 13  溅射态与经过不同温度退火处理的Ti49.09Ni50.91薄膜的XRD图谱比较, (a), (b)和(c)的退火温度分别为500, 550, 600 ℃, (d) 为溅射态

    Figure 13.  Comparison of XRD diffraction patterns of the sputtered Ti49.09Ni50.91 film and of those annealed at different temperatures: (a) Annealed at 500 ℃; (b) annealed at 550 ℃; (c) annealed at 600 ℃; (d) in sputtered state.

    表 1  不同溅射功率下的薄膜厚度及沉积速率

    Table 1.  TiNi film thickness and deposition rate under different sputtering power.

    溅射功率/W
    90110130140150155160165170180
    薄膜厚度/nm466.7623.0711.5785.4852.2832.3811.5805.9776.3755.8
    沉积速率/(nm·s–1)0.0650.0870.0990.1090.1180.1160.1130.1120.1080.105
    DownLoad: CSV

    表 2  不同溅射压强下的薄膜厚度及沉积速率

    Table 2.  TiNi film thickness and deposition rate under different sputtering pressure.

    溅射压强/Pa
    0.120.170.230.37
    薄膜厚度/nm875.6864.0852.2795.6
    沉积速率/(nm·s–1)0.1220.1200.1180.111
    DownLoad: CSV

    表 3  不同溅射压强下薄膜表面的均方根粗糙度

    Table 3.  Root mean square roughness of film surface under different sputtering pressure

    溅射压强/Pa
    0.120.170.230.37
    Rq/nm22.816.815.111.2
    DownLoad: CSV

    表 4  不同退火温度下薄膜表面的均方根粗糙度

    Table 4.  Surface root mean square roughness of thin films annealed at different temperatures.

    退火温度/℃
    室温500550600
    Rq/nm15.19.747.236.32
    DownLoad: CSV
  • [1]

    Han S P, Meng Z, Omisore O M, Akinyemi T, Yan Y P 2020 Micromachines 11 1021Google Scholar

    [2]

    解甜, 王传礼, 喻曹丰 2019 微电机 52 72Google Scholar

    Xie T, Wang C L, Yu C F 2019 Micromotors 52 72Google Scholar

    [3]

    吴建生, 吴晓东, 王征 1997 材料研究学报 5 449

    Wu J S, Wu X D, Wang Z 1997 Chin. J. Mater. Res. 5 449

    [4]

    Tan C L, Liu J, Tian X H, Zhu J C, Zhang K 2021 Results Phys. 24 104165Google Scholar

    [5]

    曲炳郡, 刘晓鹏 2002 中国机械工程 13 35

    Qu B J, Liu X P 2002 China Mechanical Engineering 13 35

    [6]

    Fu Y, Du H, Huang W, Zheng S, Min H 2004 Sens. Actuators, A 112 395Google Scholar

    [7]

    Anna M, Vijaya T, Sudha J, Anantha P, Vladimir S 2018 Defect Diffus. Forum 4695 169Google Scholar

    [8]

    Gunther V, Marchenko E, Baigonakova G 2017 Mater. Today 4 4727Google Scholar

    [9]

    Im Y M, Noh J P, Cho G B, Nam T H 2018 Shape Mem. Superelast. 4 121Google Scholar

    [10]

    Nagasaki Y, Gholipour B, Ou J Y, Tsuruta M, Plum E, MacDonald K F, Takahara J, Zheludev N I 2018 Appl. Phys. Lett. 113 021105Google Scholar

    [11]

    Knick C R, Smith G L, Morris C J, Bruck H A 2019 Sens. Actuators, A 291 48Google Scholar

    [12]

    吴佩泽, 贺志荣, 李自源, 刘康凯, 王家乐 2017 热加工工艺 46 10Google Scholar

    Wu P Z, He Z R, Li Z Y, Liu K K, Wang J L 2017 Hot Working Technology 46 10Google Scholar

    [13]

    蒋建军, 胡毅, 陈星, 等 2018 材料工程 46 1Google Scholar

    Jiang J J, Hu Y, Chen X, et al. 2018 J. Mater. Engineer. 46 1Google Scholar

    [14]

    刘兵飞, 刘亚冬, 张亚楠 2021 复合材料学报 38 1177Google Scholar

    Liu B F, Liu Y D, Zhang Y N 2021 Acta Mater. Compos. Sin. 38 1177Google Scholar

    [15]

    Zhu J N, Zeng Q F, Fu T 2019 Corros. Rev. 37 539Google Scholar

    [16]

    崔俊龙, 江秀娟 2020 CN111349886A

    Cui J L, Jiang X J 2020 CN111349886A (in Chinese)

    [17]

    Kim D, Lee H, Bae J, Hyomin C, Byeongkeun N, Taehyun N 2018 J. Nanosci. Nanotechnol. 18 6201Google Scholar

    [18]

    邱清泉, 励庆孚, 苏静静, Jim F 2009 真空科学与技术学报 29 46Google Scholar

    Qiu Q Q, Li Q F, Su J J, Jim F 2009 Chin. J. Vacuum Sci. Technol. 29 46Google Scholar

    [19]

    窦军 2013 硕士学位论文 (长春: 吉林大学)

    Dou J 2013 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [20]

    王利民 2008 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Wang L M 2008 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese)

    [21]

    Otsuka K, Ren X 1999 Intermetallics 7 511Google Scholar

    [22]

    刘晓鹏 2002 博士学位论文 (大连: 大连理工大学)

    Liu X P 2002 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [23]

    Fu Y Q, Du H J, Zhang S, Gu Y W 2005 Surf. Coat. Tech. 198 389Google Scholar

    [24]

    李艳锋, 米绪军, 尹向前, 高宝东 2011 材料热处理学报 32 11Google Scholar

    Li Y F, Mi X J, Yi X Q, Gao B D 2011 T. Mater. Heat Treat. 32 11Google Scholar

    [25]

    于孟, 薛飒, 贾兵然, 毛江虹, 牛中杰 2016 稀有金属 40 877Google Scholar

    Yu M, Xue S, Jia B R, Mao J H, Niu Z J 2016 Chin. J. Rare Metals 40 877Google Scholar

    [26]

    Zhang L, Xie C, Wu J 2007 Mater. Charact. 58 471Google Scholar

    [27]

    踪敬珍 2017 硕士学位论文 (上海: 上海交通大学)

    Zong J Z 2017 M. S. Thesis (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [28]

    林福柱 2012 硕士学位论文 (长春: 吉林大学)

    Lin F Z 2012 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [29]

    Zhang L, Xie C J, Wu J S 2007 J. Alloys Compd. 427 238Google Scholar

    [30]

    Sanjabi S, Sadrnezhaad S K, Yates K A, Barber Z H 2005 Thin Solid Films 419 190Google Scholar

    [31]

    徐娇, 寇生中, 赵燕春, 袁小鹏, 李春燕 2014 稀有金属 38 641Google Scholar

    Xu J, Kou S Z, Zhao Y C, Yuan X P, Li C Y 2014 Chin. J. Rare Metals 38 641Google Scholar

    [32]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511Google Scholar

    [33]

    Entemeyer D, Patoor E, Eberhardt A, Berveiller M 2000 Int. J. Plasticity 16 1269Google Scholar

    [34]

    Kumar A, Kannan M D, Jayakumar S, Rajam K S, Raju V S 2006 Surf. Coat. Tech. 201 3253Google Scholar

  • [1] Study on technique of TiNi-based shape memory alloy thin film coating on optical fibers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211437
    [2] Chen Ming, Zhou Xi-Ying, Mao Xiu-Juan, Shao Jia-Jia, Yang Guo-Liang. Influence of external magnetic field on properties of aluminum-doped zinc oxide films prepared by RF magnetron sputtering. Acta Physica Sinica, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [3] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [4] Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Gao Yan-Qing, Zhao Shou-Ren, Wang Shan-Li, Chu Jun-Hao. Effects of different substrates and CdCl2 treatment on the properties of CdS thin films deposited by magnetron sputtering. Acta Physica Sinica, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [5] Jiang Qiang, Mao Xiu-Juan, Zhou Xi-Ying, Chang Wen-Long, Shao Jia-Jia, Chen Ming. Influence of applied magnetic field on properties of silicon nitride thin film with light trapping structure prepared by R.F. magnetron sputtering. Acta Physica Sinica, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [6] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [7] Li Xiao-Na, Zheng Yue-Hong, Li Sheng-Bin, Dong Chuang. Fe3Si8M ternary alloy thin films prepared by magnetron sputtering. Acta Physica Sinica, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [8] Su Yuan-Jun, Xu Jun, Zhu Ming, Fan Peng-Hui, Dong Chuang. Hydrogenated poly-crystalline silicon thin films deposited by inductively coupled plasma assisted pulsed dc twin magnetron sputtering. Acta Physica Sinica, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [9] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [10] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [11] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [12] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [13] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Control of the fabrication parameters during the fabrication of photonic crystal fibers. Acta Physica Sinica, 2009, 58(9): 6308-6315. doi: 10.7498/aps.58.6308
    [14] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [15] The effect of temperature of substrate and oxygen partial pressure on V2O5 films fabricated by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [16] Liu Zhi-Wen, Gu Jian-Feng, Sun Cheng-Wei, Zhang Qing-Yu. Study on nucleation and dynamic scaling of morphological evolution of ZnO film deposition by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [17] Ding Wan-Yu, Xu Jun, Li Yan-Qin, Piao Yong, Gao Peng, Deng Xin-Lü, Dong Chuang. Characterization of silicon nitride films prepared by MW-ECR magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [18] Zhou Xiao-Li, Du Pi-Yi. CaCu33Ti44O1212 films prepared by magnetron s puttering. Acta Physica Sinica, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [19] Zhang Ren-Gang, Wang Bao-Yi, Zhang Hui, Ma Chuang-Xin, Wei Long. The properties of the as-sputtered ZnO films under different deposition parameters after sulfidation. Acta Physica Sinica, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
Metrics
  • Abstract views:  4711
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2021
  • Accepted Date:  09 October 2021
  • Available Online:  20 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回