Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Emergence of scaling in random hypernetworks

Guo Zhaohua Guo Peng Miao Rui Guo Jin-Li Yuan Yuan

Citation:

Emergence of scaling in random hypernetworks

Guo Zhaohua, Guo Peng, Miao Rui, Guo Jin-Li, Yuan Yuan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Complex networks are powerful tools for characterizing and analyzing complex systems, with wide applications in fields such as physics, sociology, technology, biology, and port terminal management. One of the core issues in complex networks is the mechanism behind the emergence of scaling laws. In real-world networks, the mechanisms underlying the emergence of scaling laws may be highly complex, making it difficult to design network evolution mechanisms that fully align with reality. Explaining real networks through simple mechanisms is a meaningful research topic. Since Barabási and Albert discovered that growth and linear preferential attachment are mechanisms that generate power-law distributions, scholars have identified various forms of preferential attachment that produce power-law degree distributions. However, the most famous and useful remains the linear preferential attachment in the BA model. Can scale-free behavior also emerge from random attachment and growth? In traditional network analysis, nodes are assumed to join the system at discrete, equally spaced time intervals, often based on the unfounded assumption that interarrival times follow a uniform distribution. In reality, nodes arrive randomly, and their interarrival times do not necessarily follow a uniform distribution. Although complex networks have flourished over the past two decades, they still cannot fully describe real systems with multiple interactions. Hypernetworks, which capture interactions involving more than two nodes, have become an important subject of study, and the mechanisms behind the emergence of scaling in hypernetworks are a key research focus. The paper first introduces the concept of cliques in hypernetworks. A 1-element clique is a node, a 2-element clique is an edge in a complex network, a 3-element clique represents a triangle in higher-order networks, and a 4-element clique corresponds to a tetrahedron in higher-order networks. Secondly, we propose a clique-driven random hypernetwork evolution model. By incorporating stochastic processes, nodes arrive in continuous time, which better reflects real-world scenarios and provides a justified distribution for node interarrival times. Using Poisson process theory, we analyze the clique-driven random hypernetwork evolution model, avoiding arbitrary assumptions about node interarrival time distributions commonly made in traditional network analysis, thereby making the network analysis more rigorous. We derive an analytical expression for the cumulative degree distribution and the power-law exponent of the node degree distribution. Finally, we validate the theoretical predictions through computer simulations and empirical analysis of collected real-world data. The results show that the clique-driven random hypernetwork evolution model employs a simple connection mechanism, and that scale-free behavior emerges from growth and random attachment in higher-order structural networks. In our model, not only do nodes join the network in continuous time, but new nodes also randomly select d-element cliques, resulting in a power-law degree distribution. When d = 2, the power-law exponent of the node degree distribution in our model matches that of the BA model. When d > 2, the power-law exponent of the degree distribution depends on the number of elements of the driving clique (simplex dimension). We can directly estimate the power-law exponent of the model's degree distribution using the number of elements of the driving clique.
  • [1]

    Redner S 1998, Euro. Phys. Journ. B 4 131

    [2]

    Kumar R, Raghavan P, Rajalopagan S, Tomkins A 1999 Proceedings of the 9th ACM Symposium on Principles of Database Systems 1

    [3]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Proc. ACM SIGCOMM, Comput. Commun. Rev. 29 251

    [4]

    Barabási A L, Albert R 1999 Science 286 509

    [5]

    Guo J L 2013 Evolving models of complex networks and human behavior dynamics (Beijing: Science Press) (in Chinese) [郭进利 2013 复杂网络和人类行为动力学演化模型(北京: 科学出版社) ]

    [6]

    Wang X F,Li X, Chen G R 2012 Networks science: an introduction (Beijing: Higher Education Press) (in Chinese) [汪小帆,李翔,陈关荣 2012 网络科学导论(北京: 高等教育出版社) ]

    [7]

    Boccaletti S, De Lellis P, del Genio, C I, Alfaro-Bittner K, Criado R, Jalan S, Romance M 2023 Phys. Rep. 1018 1

    [8]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1

    [9]

    Hu F, Liu M, Zhao J, Lei L 2018 Complex Systs. Complexity Sci. 15 31(in Chinese) [胡枫, 刘猛, 赵静, 雷蕾 2018 复杂系统与复杂性科学 15 31]

    [10]

    Zhang K , Gao J Y, Zhao H X, Hu W J, Miao M M, Zhang Z K 2025 Physica A 666 130512

    [11]

    Wang J W, Rong L L, Deng Q H, Zhang, J Y 2010 Eur. Phys. J. B 77 493

    [12]

    Hu F, Zhao H X, Ma X J 2013 Sci. Sin-Phys. Mech. Astron. 43 16 (in Chinese) [胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16]

    [13]

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 090207 (in Chinese) [郭进利, 祝昕昀 2014 物理学报 63 090207]

    [14]

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901 (in Chinese) [胡枫,赵海兴,何佳倍,李发旭,李淑玲,张子柯 2013 物理学报 62 198901]

    [15]

    Bianconi G 2021 Higher-Order Networks − An Introduction to Simplicial Complexes (London: Cambridge University Press, Inc.) pp 61-68

    [16]

    Bianconi G, Rahmede C 2016 Phys. Rev. E 93 032315

    [17]

    Fountoulakis N, Iyer T, Mailler C, Sulzbach H 2022 Ann. Appl. Probab. 32 2860

    [18]

    Kovalenko K, Sendiña-Nadal I, Khalil N, Dainiak A, Musatov D, Raigorodskii A M, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Commun. Phys. 4 1

    [19]

    Courtney O T, Bianconi G. 2017 Phys. Rev. E 93 062311

    [20]

    Bian J H, Zhou T, Bi Y L 2025 Commun. Phys. 8 228

    [21]

    Bianconi G 2024 J. Phys. A: Math. Theor. 57 015001

    [22]

    Zhang K, Gao J W, Hu W J, Zhang Y 2023 Sci. Sin-Phys. Mech. Astron. 53 270511(in Chinese) [张科, 高靖宇, 胡文军, 张永 2023 中国科学: 物理学 力学 天文学 53 270511]

    [23]

    Zhou T, Xiao W K, Ren J, Wang B H 2007 Complex Systs. Complexity Sci. 4 10 (in Chinese) [周涛,肖伟科,任 捷,汪秉宏 2007 复杂系统与复杂性科学 4 10]

    [24]

    Bretto A 2013 Hypergraph theory (Switzerland: Springer International Publishing Switzerland)

    [25]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

  • [1] Liu Bo, Zeng Yu-Jie, Yang Rong-Mei, Lü Lin-Yuan. Fundamental statistics of higher-order networks: a survey. Acta Physica Sinica, doi: 10.7498/aps.73.20240270
    [2] Luo Kai-Ming, Guan Shu-Guang, Zou Yong. Reconstruction of simplex structures based on phase synchronization dynamics. Acta Physica Sinica, doi: 10.7498/aps.73.20240334
    [3] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, doi: 10.7498/aps.73.20231416
    [4] Chen Wei-Ying, Pan Jian-Chen, Han Wen-Chen, Huang Chang-Wei. Evolutionary public goods games on hypergraphs with heterogeneous multiplication factors. Acta Physica Sinica, doi: 10.7498/aps.70.20212436
    [5] Lu Wen, Zhao Hai-Xing, Meng Lei, Hu Feng. Double-layer hypernetwork model with bimodal peak characteristics. Acta Physica Sinica, doi: 10.7498/aps.70.20201065
    [6] Ma Xiu-Juan, Zhao Hai-Xing, Hu Feng. Cascading failure analysis in hyper-network based on the hypergraph. Acta Physica Sinica, doi: 10.7498/aps.65.088901
    [7] Guo Jin-Li. Emergence of scaling in non-uniform hypernetworksdoes the rich get richer lead to a power-law distribution?. Acta Physica Sinica, doi: 10.7498/aps.63.208901
    [8] Guo Jin-Li, Zhu Xin-Yun. Emergence of scaling in hypernetworks. Acta Physica Sinica, doi: 10.7498/aps.63.090207
    [9] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, doi: 10.7498/aps.62.020513
    [10] Hu Feng, Zhao Hai-Xing, He Jia-Bei, Li Fa-Xu, Li Shu-Ling, Zhang Zi-Ke. An evolving model for hypergraph-structure-based scientific collaboration networks. Acta Physica Sinica, doi: 10.7498/aps.62.198901
    [11] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.61.090504
    [12] Liu Gang, Li Yong-Shu. Study on the congestion phenomena in complex network based on gravity constraint. Acta Physica Sinica, doi: 10.7498/aps.61.108901
    [13] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, doi: 10.7498/aps.61.050201
    [14] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, doi: 10.7498/aps.60.038901
    [15] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.5903
    [16] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.6068
    [17] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.58.1462
    [18] Wang Dan, Yu Hao, Jing Yuan-Wei, Jiang Nan, Zhang Si-Ying. Study on the congestion in complex network based on traffic awareness algorithm. Acta Physica Sinica, doi: 10.7498/aps.58.6802
    [19] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, doi: 10.7498/aps.56.1313
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  111
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  24 September 2025
  • /

    返回文章
    返回