-
In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model. The functional of the ground state energy of the system is obtained by spin coherent states and variational method. By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained. It is found that there are bistable state of normal phase and reverse normal phase, coexistent state of superradiation phase and reversed normal phase, and reversed normal phase that exists alone. The different interaction strengths between atoms and two-mode light fields greatly affect the value of the phase transition point. There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase. The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase. There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized. The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases. The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state. In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
-
Keywords:
- two model optomechanical cavity /
- light-phonon nonlinear coupling /
- quantum phase transition /
- superradiation phase collapse
[1] Dicke R H 1954 Phys. Rev. 93 99Google Scholar
[2] Hepp K, Lieb E H 1973 Ann. Phys. 76 360Google Scholar
[3] Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar
[4] Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar
[5] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar
[6] Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar
[7] Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar
[8] Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar
[9] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar
[10] Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar
[11] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar
[12] Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909Google Scholar
[13] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar
[14] 陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar
Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar
[15] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar
Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar
[16] 韩明, 谷开慧, 刘一谋, 张岩, 王晓畅, 田雪冬, 付长宝, 崔淬砺 2014 物理学报 63 094206Google Scholar
Han M, Gu K H, Liu Y M, Zhang Y, Wang X C, Tian X D, Fu C B, Cui C L 2014 Acta Phys. Sin. 63 094206Google Scholar
[17] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar
[18] Ian H, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. A 78 013824Google Scholar
[19] Jiang C, Bian X T, Cui Y S, Chen G B 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 2099Google Scholar
[20] Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar
[21] Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar
[22] Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar
[23] Santos J P, Semião F L, Furuya K 2010 Phys. Rev. A 82 063801Google Scholar
[24] Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar
[25] Clerk A A, Marquardt F, Harris J G E 2010 Phys. Rev. Lett. 104 213603Google Scholar
[26] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar
[27] Wang B, Nori F, Xiang Z X 2024 Phys. Rev. Lett. 132 053601Google Scholar
[28] Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar
[29] Léonard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar
[30] Zhang G Q, Chen Z, You J Q 2020 Phys. Rev. A 102 032202Google Scholar
[31] Quezada L F, Nahmad-Achar E 2017 Phys. Rev. A 95 013849Google Scholar
[32] Liu N, Zhao X Q, Liang J Q 2019 Int. J. Theor. Phys. 58 558Google Scholar
[33] 赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar
Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar
[34] Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211Google Scholar
[35] Fox R F 1999 Phys. Rev. A 59 3241Google Scholar
[36] 黄洪斌 1991 物理学报 40 1396Google Scholar
Huang H B 1991 Acta Phys. Sin. 40 1396Google Scholar
[37] Zhu W S, Rabitz H 1998 Phys. Rev. A 58 4741Google Scholar
[38] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar
[39] Bell S, Crighton J S, Fletcher R 1981 Chem. Phys. Lett. 82 122Google Scholar
[40] Vallone G, Cariolaro G, Pierobon G 2019 Phys. Rev. A 99 023817Google Scholar
[41] Frueholz R P, Camparo J C 1996 Phys. Rev. A 54 3499Google Scholar
[42] Aftalion A, Mason P 2016 Phys. Rev. A 94 023616Google Scholar
[43] Schlittler T M, Mosseri R, Barthel T 2017 Phys. Rev. B 96 195142Google Scholar
[44] Deshpande A, Gorshkov A V, Fefferman B 2022 PRX Quantum 3 040327Google Scholar
[45] Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402Google Scholar
-
图 1 双模光机械腔的示意图. 在水平方向上, 机械谐振子的频率是$ {\omega _{\text{b}}} $, 腔模的频率是$ {\omega _1} $; 在垂直方向上, 腔模的频率是$ {\omega _2} $
Figure 1. Schematic diagram of a two-mode opto-mechanical cavity. $ {\omega _{\text{b}}} $ is the frequency of the mechanical harmonic oscillator in the horizontal direction, $ {\omega _1} $ is the frequency of the cavity mode, and $ {\omega _2} $ is the frequency of the cavity mode in the vertical direction.
图 2 $ {g_1}/{\omega _{\mathrm{a}}} $ -$ {g_2}/{\omega _{\text{a}}} $的平面被分成五个区域, 其中$ {g_1}/ {\omega _{\text{a}}} $$ \lt 1, $ $ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \lt 1 $在区域I; $ {g_1}/{\omega _{\text{a}}} \leqslant 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \leqslant 1, $$ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \geqslant 1 $在区域II; $ {g_1}/{\omega _{\text{a}}} \lt 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \gt 1 $在区域III; $ {g_1}/{\omega _{\text{a}}} \gt 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \gt 1 $在区域IV; $ {g_1}/{\omega _{\text{a}}} \gt 1, ~~{g_2}/{\omega _{\text{a}}} $$ \lt 1 $在区域V
Figure 2. Plane $ {g_1}/{\omega _{\text{a}}} {\text{-}} {g_2}/{\omega _{\text{a}}} $ is divided into five regions, $ {g_1}/{\omega _{\text{a}}} \lt 1 $, $ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \lt 1 $ in region I; $ {g_1}/{\omega _{\text{a}}} \leqslant 1, $$ {\text{ }}{g_2}/{\omega _{\text{a}}} \leqslant 1,~~ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \geqslant 1 $ in region II; $ {g_1}/{\omega _{\text{a}}} \lt 1 $, $ {g_2}/{\omega _{\text{a}}} \gt 1 $ in region III; $ {g_1}/{\omega _{\text{a}}} \gt 1 $, $ {g_2}/{\omega _{\text{a}}} \gt 1 $ in region IV; $ {g_1}/{\omega _{\text{a}}} \gt 1 $, $ {g_2}/{\omega _{\text{a}}} \lt 1 $ in region V.
图 4 $ g/{\omega _{\text{a}}}{\text{ - }}\zeta /{\omega _{\text{a}}} $平面中的相图 $ \left( {\text{a}} \right){\text{ }}\delta = - {1}. {\text{0;}} $ $ \left(\text{b}\right)\text{ }\delta =-0.5; $ $ \left( {\text{c}} \right){\text{ }}\delta = 0.0; $ $ \left( {\text{d}} \right){\text{ }}\delta = 0.5 $
Figure 4. Phase diagram in a plane $ g/{\omega _{\text{a}}}{\text{ - }}\zeta /{\omega _{\text{a}}} $: $ \left( {\text{a}} \right){\text{ }}\delta = - {1}. {\text{0;}} $ $ \left( {\text{b}} \right){\text{ }}\delta = - 0.5; $ $ \left( {\text{c}} \right){\text{ }}\delta = 0.0; $ $ \left( {\text{d}} \right){\text{ }}\delta = 0.5 $
表 1 光-声子的非线性参量$ \zeta = 0 $、平均基态能量为$ {\varepsilon _ - } $时, 相应点的计算值
Table 1. Calculated values of the corresponding point when nonlinear parameters of the light-phonon $ \zeta = 0 $ and the average ground state energy is $ {\varepsilon _ - } $
区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline{{\gamma }_{1}^{2}}, \text{ }\overline{{\gamma }_{2}^{2}}) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ {\begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array}} \right] $ 特征值$ \left[ {{H_ - }} \right] $ I (0.3, 0.4) (0, 0) –0.5 $ \left[ {\begin{array}{*{20}{c}} {1.82}&{ - 0.24} \\ { - 0.24}&{1.68} \end{array}} \right] $ (2, 1.5) II (0.8, 0.7) (0.0347, 0.0266) –0.5037 $ \left[ {\begin{array}{*{20}{c}} {1.1129}&{ - 0.7762} \\ { - 0.7762}&{1.3208} \end{array}} \right] $ (2, 0.4337) III (0.6, 1.6) (0.0794, 0.5649) –0.8156 $ \left[ {\begin{array}{*{20}{c}} {1.9711}&{ - 0.0711} \\ { - 0.0711}&{1.7943} \end{array}} \right] $ (2, 1.7654) IV (1.5, 1.5) (0.5347, 0.5347) –1.1806 $ \left[ {\begin{array}{*{20}{c}} {1.9506}&{ - 0.0494} \\ { - 0.0494}&{1.9506} \end{array}} \right] $ (2, 1.9012) V (1.5, 0.5) (0.4725, 0.0525) –0.725 $ \left[ {\begin{array}{*{20}{c}} {1.7119}&{ - 0.0960} \\ { - 0.0960}&{1.9680} \end{array}} \right] $ (2, 1.6800) 表 2 光-声子的非线性参量$ \zeta /{\omega _{\text{a}}} = 1.0 $、平均基态能量为$ {\varepsilon _ - } $时, 相应点的计算值
Table 2. Calculated values of the corresponding point when nonlinear parameters of the light-phonon $ \zeta /{\omega _{\text{a}}} = 1.0 $ and the average ground state energy is $ {\varepsilon _ - } $.
区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline {\gamma _1^2} , {\text{ }}\overline {\gamma _2^2} ) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ \begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array} \right] $ 特征值$ \left[ {{H_ - }} \right] $ I (0.4, 0.3) (4.5925, 0.01716) 1.2585 $ \left[ \begin{array}{*{20}{c}} { - 3.5436}&{ - 0.0326} \\ { - 0.0326}&{1.9674} \end{array} \right] $ (–3.5438, 1.9676) II (0.7, 0.8) $ \left\{ {\begin{aligned} &{\left( {4.1771, 0.1478} \right)} \\ &{\left( {0.0273, 0.0353} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.7714} \\ &{ - 0.5038} \end{aligned}} \right. $ $ \left\{ \begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 3.033}&{ - 0.0237} \\ { - 0.0237}&{1.9730} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.2929}&{ - 0.7707} \\ { - 0.7707}&{1.1192} \end{array} \right]} \end{aligned} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 0.0334, 1.9731} \right)} \\ &{\left( {1.9816, 0.4305} \right)} \end{aligned}} \right. $ III (0.8, 1.2) $ \left\{ {\begin{aligned} &{\left( {4.0258, 0.3439} \right)} \\ &{\left( {0.1303, 0.2781} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.3866} \\ & { - 0.6418} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 2.8431}&{ - 0.0182} \\ { - 0.0182}&{1.9727} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.8432, 1.9728} \right)} \\ &{\left( {1.9046, 1.4880} \right)} \end{aligned}} \right. $ IV (1.5, 1.5) $ \left\{ {\begin{aligned} &{\left( {2.7669, 0.5519} \right)} \\ &{\left( {0.7439, 0.5390} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{ - 1.0907} \\ & { - 1.2190} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 1.3319}&{ - 0.0116} \\ { - 0.0116}&{1.9884} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 1.3220, 1.9884} \right)} \\ & {\left( {1.9632, 1.0673} \right)} \end{aligned}} \right. $ V (1.2, 0.8) $ \left\{ {\begin{aligned} &{\left( {3.4015, 0.1540} \right)} \\ &{\left( {0.3252, 0.1263} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned}& { - 0.1776} \\ &{ - 0.6491} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left[ \begin{array}{*{20}{c}} { - 2.1072}&{ - 0.0141} \\ { - 0.0141}&{1.9907} \end{array} \right]} \\ &{\left[ \begin{array}{*{20}{c}} {1.3319}&{ - 0.1853} \\ { - 0.1853}&{1.8765} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.1073, 1.9907} \right)} \\ &{\left( {1.9336, 1.2748} \right)} \end{aligned}} \right. $ 表 3 模式2光场$ {\gamma _2} = 0 $、光-声子的非线性参量$ \zeta /{\omega _{\text{a}}} = 1.0 $、基态能量取$ {\varepsilon _ + } $时, 相应点的计算值
Table 3. Calculated values of the corresponding point when the light field of mode 2 $ {\gamma _2} = 0 $, nonlinear parameters of the light-phonon $ \zeta /{\omega _{\text{a}}} = 1.0 $ and the average ground state energy is $ {\varepsilon _ + } $.
$ {{{g_1}}}/{{{\omega _{\text{a}}}}} $ $ \overline {\gamma _1^2} $ $ {\varepsilon _ + } $ $ {{{\partial ^2}{\varepsilon _ + }}}/{{\partial \gamma _1^2}} $ 0.4 5.0910 3.531 –4.0728 0.8 5.0614 4.3676 –4.0491 1.2 5.0437 5.2408 –4.0350 1.6 5.0336 6.1243 –4.0269 -
[1] Dicke R H 1954 Phys. Rev. 93 99Google Scholar
[2] Hepp K, Lieb E H 1973 Ann. Phys. 76 360Google Scholar
[3] Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar
[4] Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar
[5] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar
[6] Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar
[7] Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar
[8] Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar
[9] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar
[10] Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar
[11] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar
[12] Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909Google Scholar
[13] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar
[14] 陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar
Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar
[15] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar
Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar
[16] 韩明, 谷开慧, 刘一谋, 张岩, 王晓畅, 田雪冬, 付长宝, 崔淬砺 2014 物理学报 63 094206Google Scholar
Han M, Gu K H, Liu Y M, Zhang Y, Wang X C, Tian X D, Fu C B, Cui C L 2014 Acta Phys. Sin. 63 094206Google Scholar
[17] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar
[18] Ian H, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. A 78 013824Google Scholar
[19] Jiang C, Bian X T, Cui Y S, Chen G B 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 2099Google Scholar
[20] Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar
[21] Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar
[22] Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar
[23] Santos J P, Semião F L, Furuya K 2010 Phys. Rev. A 82 063801Google Scholar
[24] Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar
[25] Clerk A A, Marquardt F, Harris J G E 2010 Phys. Rev. Lett. 104 213603Google Scholar
[26] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar
[27] Wang B, Nori F, Xiang Z X 2024 Phys. Rev. Lett. 132 053601Google Scholar
[28] Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar
[29] Léonard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar
[30] Zhang G Q, Chen Z, You J Q 2020 Phys. Rev. A 102 032202Google Scholar
[31] Quezada L F, Nahmad-Achar E 2017 Phys. Rev. A 95 013849Google Scholar
[32] Liu N, Zhao X Q, Liang J Q 2019 Int. J. Theor. Phys. 58 558Google Scholar
[33] 赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar
Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar
[34] Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211Google Scholar
[35] Fox R F 1999 Phys. Rev. A 59 3241Google Scholar
[36] 黄洪斌 1991 物理学报 40 1396Google Scholar
Huang H B 1991 Acta Phys. Sin. 40 1396Google Scholar
[37] Zhu W S, Rabitz H 1998 Phys. Rev. A 58 4741Google Scholar
[38] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar
[39] Bell S, Crighton J S, Fletcher R 1981 Chem. Phys. Lett. 82 122Google Scholar
[40] Vallone G, Cariolaro G, Pierobon G 2019 Phys. Rev. A 99 023817Google Scholar
[41] Frueholz R P, Camparo J C 1996 Phys. Rev. A 54 3499Google Scholar
[42] Aftalion A, Mason P 2016 Phys. Rev. A 94 023616Google Scholar
[43] Schlittler T M, Mosseri R, Barthel T 2017 Phys. Rev. B 96 195142Google Scholar
[44] Deshpande A, Gorshkov A V, Fefferman B 2022 PRX Quantum 3 040327Google Scholar
[45] Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402Google Scholar
Catalog
Metrics
- Abstract views: 618
- PDF Downloads: 38
- Cited By: 0