Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model

Chen Xi-Hao Wang Xiu-Juan

Citation:

Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model

Chen Xi-Hao, Wang Xiu-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using the infinite time evolving block decimation in the presentation of infinite matrix product states, we study an extended quantum compass model (EQCM). This model does not only include extremely rich phase diagrams due to competitions of orbital degrees of freedom and anisotropic couplings between pseudospin-1/2 operators but also have the capacity to describe property of protected qubits for quantum computation which leads to lots of attentions paid to the phase boundaries of the EQCM. However, few attentions are paid to long-range topological string correlation order parameters of the EQCM. To study order parameters, one should understand spontaneous symmetry breaking which relates to Landau quantum phase transitions theory. Once spontaneous symmetry breaking happens, there should exist some local order which can be described by a local order parameter. This order parameter can be used to distinguish the phase from others. For continuous quantum phase transitions, in the critical regime, critical exponents can be extracted. Unfortunately, the long-range topological string correlation orders are beyond Landau quantum phase transitions theory, one can not directly use two paradigms of Landau-Ginzburg-Wilson. Usually, one can define a local order parameter by local magnetization. Naturally, one can also refer to this way to define the long-range topological string correlation order parameters by long-range topological string correlations on the following conditions, i.e. the quantum system undergoes a hidden spontaneous symmetry breaking; the long-range topological string correlation order parameter can be used to distinguish the phase from others; for continuous quantum phase transitions, the long-range topological string correlation order parameter satisfies scaling law when control parameter getting close to critical point. Based on above idea, in order to characterize the topological ordered phases and quantum phase transitions in the EQCM, even/odd long-range topological string correlations are introduced based on even/odd bonds. Hereafter, fidelity per lattice site, even/odd long-range topological string correlations, the saturation behavior of odd long-range topological string correlations and order parameters are calculated. The long-range topological string correlations show three distinguished behaviors which include decaying to zero, monotonic saturation and oscillatory saturation. By the above characterizations, oscillatory/monotonic odd long-range topological string correlation order parameter is derived. Then ground-state phase diagram of order parameters is computed which includes oscillatory/monotonic odd long-range topological string correlation order phase and antiferromagnetic phase. In the critical regime, critical exponent β=1/8 extracted from monotonic odd long-range topological string correlation order parameter and local magnetization shows the phase transition belongs to Ising universality. In addition, the phase transition points, the order of the phase transitions of fidelity show consistent with the results of order parameters.
      Corresponding author: Wang Xiu-Juan, shanshui510@163.com
    [1]

    Kugel K I, Khomskii D I 1973 Zh. Eksp. Teor. Fiz. 64 1429

    [2]

    Doucot B, Feigelán M V, IoffeL B, Ioselevich A S 2005 Phys. Rev. B 71 024505

    [3]

    Milman P, Maineult W, Guibal S, Guidoni L, Douot B, Ioffe L, Coudreau T 2007 Phys. Rev. Lett. 99 020503

    [4]

    Brzezicki W, Dziarmaga J, Olés A M 2007 Phys. Rev. B 75 134418

    [5]

    You W L, Tian G S 2008 Phys. Rev. B 78 184406

    [6]

    Brzezicki W, Olés A M 2009 Acta Phys. Pol. A 115 162

    [7]

    Sun K W, Zhang Y Y, Chen Q H 2009 Phys. Rev. B 79 104429

    [8]

    Sun K W, Chen Q H 2009 Phys. Rev. B 80 174417

    [9]

    Wang H T, Cho S Y 2015 J. Phys.:Condens. Matter 27 015603

    [10]

    Eriksson E, Johannesson H 2009 Phys. Rev. B 79 224424

    [11]

    Liu G H, Li W, You W L, Tian G S, Su G 2012 Phys. Rev. B 85 184422

    [12]

    Wang L C, Yi X X 2010 Eur. Phys. J. D 77 281

    [13]

    Jafari R 2011 Phys. Rev. B 84 035112

    [14]

    Motamedifar M, Mahdavifar S, Shayesteh S F 2011 Eur. Phys. J. B 83 181

    [15]

    You W L 2012 Eur. Phys. J. B 85 83

    [16]

    Liu G H, Li W, You W L 2012 Eur. Phys. J. B 85 168

    [17]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [18]

    Zhou H Q 2008 arXiv:0803.0585v1 [cond-mat.stat-mech]

    [19]

    Wang H T, Cho S Y, Batchelor M T 2015 arXiv:1508.01316 [quant-ph]

    [20]

    Zhou H, Barjaktarevi J P 2008 J. Phys. A:Math. Theor. 41 412001

    [21]

    Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301 (in Chinese) [苏耀恒, 陈爱民, 王洪雷, 相春环 2017 物理学报 66 120301]

    [22]

    Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304

    [23]

    Hida K 1992 Phys. Rev. B 45 2207

    [24]

    Chen X H, Cho S Y, Zhou H Q 2016 J. Korean Phys. Soc. 68 1114

    [25]

    Wang H T, Li B, Cho S Y 2013 Phys. Rev. B 87 054402

    [26]

    Hatsugai Y 2007 J. Phys.:Condens. Matter 19 145209

    [27]

    Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125

    [28]

    Su Y H, Cho S Y, Li B, Wang H L, Zhou H Q 2012 J. Phys. Soc. Jpn. 81 074003

  • [1]

    Kugel K I, Khomskii D I 1973 Zh. Eksp. Teor. Fiz. 64 1429

    [2]

    Doucot B, Feigelán M V, IoffeL B, Ioselevich A S 2005 Phys. Rev. B 71 024505

    [3]

    Milman P, Maineult W, Guibal S, Guidoni L, Douot B, Ioffe L, Coudreau T 2007 Phys. Rev. Lett. 99 020503

    [4]

    Brzezicki W, Dziarmaga J, Olés A M 2007 Phys. Rev. B 75 134418

    [5]

    You W L, Tian G S 2008 Phys. Rev. B 78 184406

    [6]

    Brzezicki W, Olés A M 2009 Acta Phys. Pol. A 115 162

    [7]

    Sun K W, Zhang Y Y, Chen Q H 2009 Phys. Rev. B 79 104429

    [8]

    Sun K W, Chen Q H 2009 Phys. Rev. B 80 174417

    [9]

    Wang H T, Cho S Y 2015 J. Phys.:Condens. Matter 27 015603

    [10]

    Eriksson E, Johannesson H 2009 Phys. Rev. B 79 224424

    [11]

    Liu G H, Li W, You W L, Tian G S, Su G 2012 Phys. Rev. B 85 184422

    [12]

    Wang L C, Yi X X 2010 Eur. Phys. J. D 77 281

    [13]

    Jafari R 2011 Phys. Rev. B 84 035112

    [14]

    Motamedifar M, Mahdavifar S, Shayesteh S F 2011 Eur. Phys. J. B 83 181

    [15]

    You W L 2012 Eur. Phys. J. B 85 83

    [16]

    Liu G H, Li W, You W L 2012 Eur. Phys. J. B 85 168

    [17]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [18]

    Zhou H Q 2008 arXiv:0803.0585v1 [cond-mat.stat-mech]

    [19]

    Wang H T, Cho S Y, Batchelor M T 2015 arXiv:1508.01316 [quant-ph]

    [20]

    Zhou H, Barjaktarevi J P 2008 J. Phys. A:Math. Theor. 41 412001

    [21]

    Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301 (in Chinese) [苏耀恒, 陈爱民, 王洪雷, 相春环 2017 物理学报 66 120301]

    [22]

    Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304

    [23]

    Hida K 1992 Phys. Rev. B 45 2207

    [24]

    Chen X H, Cho S Y, Zhou H Q 2016 J. Korean Phys. Soc. 68 1114

    [25]

    Wang H T, Li B, Cho S Y 2013 Phys. Rev. B 87 054402

    [26]

    Hatsugai Y 2007 J. Phys.:Condens. Matter 19 145209

    [27]

    Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125

    [28]

    Su Y H, Cho S Y, Li B, Wang H L, Zhou H Q 2012 J. Phys. Soc. Jpn. 81 074003

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [3] Gu Zhao-Long, Li Jian-Xin. Topological order and fractionalized excitations in quantum many-body systems. Acta Physica Sinica, 2024, 73(7): 070301. doi: 10.7498/aps.73.20240222
    [4] Xu Xiao-Yan. Quantum Monte Carlo study of strongly correlated electrons. Acta Physica Sinica, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [5] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [6] Bao An. Mott transition of fermions in anisotropic ruby lattice. Acta Physica Sinica, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [7] You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model. Acta Physica Sinica, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [8] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [9] Ye Peng. Gauge theory of strongly-correlated symmetric topological Phases. Acta Physica Sinica, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [10] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [11] Huang Shan, Liu Ni, Liang Jiu-Qing. Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity. Acta Physica Sinica, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [12] Zhang Lei. Critical behaviors of helimagnetic ordering systems relating to skyrmion. Acta Physica Sinica, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [13] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [14] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [15] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [16] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [17] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] Tong Hong, Zhang Chun-Mei, Shi Zhu-Yi, Wang Hong, Ni Shao-Yong. Nuclear shape phase transition SU(3)→U(5)→SU(3) of the yrast-band structure in 182Os from nucleonic order. Acta Physica Sinica, 2010, 59(5): 3136-3141. doi: 10.7498/aps.59.3136
    [19] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Antiferromagnetic quantum phase transition near x=1.00 in NiS2-xSex system. Acta Physica Sinica, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] Shi Zhu-Yi, Tong Hong, Shi Zhu-Ya, Zhang Chun-Mei, Zhao Xing-Zhi, Ni Shao-Yong. A possible route of nuclear quantum phase transition induced by rotation. Acta Physica Sinica, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
Metrics
  • Abstract views:  6582
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2018
  • Accepted Date:  13 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回