Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Critical behaviors of helimagnetic ordering systems relating to skyrmion

Zhang Lei

Citation:

Critical behaviors of helimagnetic ordering systems relating to skyrmion

Zhang Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Study of critical phenomena plays a key role in developing the theory of phase transition. In this article, we mainly review some new experimental results about the critical phenomena reported recently in the helimagentic ordering materials. These materials exhibit a kind of a vortex-like spin texture so-called skyrmion phase. The skyrmion phase has great potential applications in the new spin-based storage due to the topologically protected stability, nanometric size, and current-driven motion. Generally, the skyrmion state exists in a helimagentic system due to the DzyaloshinskiiMoriya (DM) interaction which forms in the crystal structure without inversion symmetry. It usually emerges just below the helimagentic phase transition temperature TC under a certain temperature and magnetic field. In this review article, firstly, we introduce some basic concepts about the phase transition, such as critical phenomenon, critical exponents, scaling law, and universality. Secondly, we discuss two different methods which can help us to obtain the critical exponents, i.e., the iteration method based on the isothermal dc-magnetization and the fitting technique based on the magnetic entropy change. Both methods are extensively used in the current study of critical phenomena Thirdly, we analyze and outline some latest studies of critical behaviors and critical exponents for several typical helimagnetic systems with skyrmion state, such as MnSi, FeGe, Cu2OSeO3, Fe1-xCoxSi, and Fe1.5-xCoxRh0.5MoN. The B20 compound MnSi is a typical skyrmion material, which undergoes a paramagnetic-to-helimagnetic phase transition at ~30.5 K and the skyrmion phase appears just below TC as an appropriate external magnetic field is applied. Investigations show that critical exponents of MnSi belong in the universality class of a tricritical mean-field model, implying the existence of a long-rang magnetic interaction in this system. The critical behavior of MnSi reveals that its first-order phase transition can be driven into a second-order phase transition by the action of external magnetic field, where a field-induced tricritical point is found among the helimagnetic, conical, and paramagnetic phases in MnSi system. Unlike MnSi, the critical exponent of the near-room-temperature skyrmion system FeGe, which undergoes a helimagentic phase transition at 278 K, belong to the three-dimensional Heisenberg model. The critical behavior of Cu2OSeO3 is similar to that of FeGe, which indicates that the magnetic interactions in these two systems are dominated by the short-range nearestneighbor isotropic magnetic coupling. In addition, studies revealed that magnetic interaction and critical behavior of the skyrmion system can be effectively modulated by doping. The critical exponents of Fe1-xCoxSi and the newly founded skyrmion system of Fe1.5-xCoxRh0.5MoN indicated that the doping concentration of Co can change and affect their critical behaviors. In addition, it was demonstrated that the doping of Co enhanced the anisotropic magnetic coupling in Fe1-xCoxSi while it suppressed that in Fe1.5-xCoxRh0.5MoN. Fourthly, according to the universality and the scaling equations, we proposed a method to construct the detailed H-T phase diagram around the phase transition temperature in the system exhibiting field-induced phase transition. Finally, we make a brief summary and suggest our perspectives of the study of critical phenomena in helimagentic system. The results of critical behaviors indicate that although all these helimagentic systems exhibit a similar skyrmion phase, their essential magnetic interactions belong in different universality classes, indicating different types of magnetic coupling in these systems. Furthermore, the results also suggest that magnetic coupling can also be effectively tuned by the external modulation.
      Corresponding author: Zhang Lei, zhagnlei@hmfl.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0303201) and the National Natural Science Foundation of China (Grants Nos. 11574322, U1732276).
    [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [3]

    Jiang W J, Chen G, Liu K, Zang J D, Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1

    [4]

    Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovcs A, Zang J D, Tian M L, Zhang Y H, Du H F, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [5]

    Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Georgii R, Boni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [6]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [7]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901

    [8]

    Psaroudaki C, Hoffman S, Klinovaja J, Loss D 2017 Phys. Rev. X 7 041045

    [9]

    Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y 2017 Phys. Rev. Lett. 119 237201

    [10]

    Kharkov Y A, Sushkov O P, Mostovoy M 2017 Phys. Rev. Lett. 119 207201

    [11]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E, Hoffmann A 2015 Science 349 283

    [12]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippe E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561

    [13]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509

    [14]

    Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717

    [15]

    Mohseni S, Sani S, Persson J, Nguyen T, Chung S, Pogoryelov Y, Muduli P, Iacocca E, Eklund A, Dumas R, Bonetti S, Deac A, Hoefer M, Akerman J 2013 Science 339 1295

    [16]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [17]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [18]

    Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204

    [19]

    Rybakov F, Borisov A, Blge S, Kiselev N 2015 Phys. Rev. Lett. 115 117201

    [20]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [21]

    Brown G, Rho M 2010 The Multifaced Skyrmions (Singapore: World Scientific)

    [22]

    Bogdanov A N, Yablonskii D A 1989 Sov. Phys. JETP 68 101

    [23]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [24]

    Ishikawa Y, Arai M 1984 J. Phys. Soc. Jpn. 53 2726

    [25]

    Thessieu C, Pfleiderer C, Stepanov A N, Flouquet J 1997 J. Phys.: Condens. Matter 9 6677

    [26]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [27]

    Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417

    [28]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [29]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [30]

    Ding H F, Schmid A K, Li D Q, Guslienko K Y, Bader S D 2005 Phys. Rev. Lett. 94 157202

    [31]

    Sonntag A, HermenauJ, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202

    [32]

    Simon E, Palotas K, Rozsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410

    [33]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [34]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [35]

    Siegfried S A, Altynbaev E V, Chubova N M, Dyadkin V, Chernyshov D, Moskvin E V, Menze D, Heinemann A, Schreyer A, Grigorie S V 2015 Phys. Rev. B 91 184406

    [36]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 89

    [37]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [38]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [39]

    Yu X Z, Kanazawa N, Zhang W Z, Nnagai T, Hara T, Kimoto K, Mmatsui Y, Oonose Y, Tokura Y 2012 Nat. Commun. 3 988

    [40]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [41]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [42]

    Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p9 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第9 页]

    [43]

    Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p83 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第83页]

    [44]

    Jiang S T, Li W L 2003 Magnetic Physics in Condensed Matter (Beijing: Science Press) pp173-182 (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第173182页]

    [45]

    Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)

    [46]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740

    [47]

    Arrott A 1957 Phys. Rev. 108 1394

    [48]

    Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456

    [49]

    Levy L 2000 Magnetism and Superconductivity (Berlin: Springer)

    [50]

    Banerjee S 1964 Phys. Lett. 12 16

    [51]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J Alloys Compd. 508 238

    [52]

    Arrott A, Noakes J 1967 Phys. Rev. Lett. 19 786

    [53]

    Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L, Zhang Y H 2012 Phys. Rev. B 85 104419

    [54]

    Fisher M 1967 Rep. Prog. Phys. 30 615

    [55]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang H Y 2010 Phys. Rev. B 81 144426

    [56]

    Kouvel J, Fisher M 1964 Phys. Rev. A 136 1626

    [57]

    Pecharsky V, Gschneidner K 1999 J. Magn. Magn. Mater. 200 44

    [58]

    Franco V, Blazquez J, Conde A 2006 Appl. Phys. Lett. 89 222512

    [59]

    Franco V, Conde A 2010 Inter. J. Ref. 33 465

    [60]

    Fan J Y, Pi L, Zhang L, Tong W, Ling L S, Hong B, Shi Y G, Zhang W C, Lu D, Zhang Y H 2011 Appl. Phys. Lett. 98 072508

    [61]

    Han H, Zhang L, Zhu X D, Du H F, Ge M, Ling L S, Pi L, Zhang C J, Zhang Y H 2017 J. Alloys Compd. 693 389

    [62]

    Zhang L, Fan J Y, Tong W, Ling L S, Pi L, Zhang Y H 2012 Physica B 407 3543

    [63]

    Samatham S S, Ganesan V 2017 Phys. Rev. B 95 115118

    [64]

    Manyala N, Sidis Y, DiTusa J, Aeppli G, Young D, Fisk Z 2000 Nature 404 581

    [65]

    Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427

    [66]

    Watanabe H, Parameswaran S A, Raghu S, Vishwanath A 2014 Phys. Rev. B 90 045145

    [67]

    Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330

    [68]

    Janoschek M, Garst M, Bauer A, Krautscheid P, Georgii R, Boni P, Pfleiderer C 2013 Phys. Rev. B 87 134407

    [69]

    Buhrandt S, Fritz L 2013 Phys. Rev. B 88 195137

    [70]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley)

    [71]

    Bauer A, Garst M, Pfleiderer C 2013 Phys. Rev. Lett. 110 177207

    [72]

    Brazovskii S A, Eksp Z, Fiz T 1975 Sov. Phys. JETP 41 85

    [73]

    Zhang L, Menzel D, Jin C, Du H F, Ge M, Zhang C J, Pi L, Tian M L, Zhang Y H 2015 Phys. Rev. B 91 024403

    [74]

    Chattopadhyay M, Arora P, Roy S 2009 J. Phys.: Condens. Matter 21 296003

    [75]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917

    [76]

    Fischer S F, Kaul S N, Kronmuller H 2002 Phys. Rev. B 65 064443

    [77]

    Pramanik A K, Banerjee A 2009 Phys. Rev. B 79 214426

    [78]

    Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Boni P, Lamago D, Eckerlebe H, Pranzas K 2005 Phys. Rev. B 72 134420

    [79]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [80]

    Lebech B, Bernhard J, Freltoft T 1989 J. Phys.: Condens. Matter 1 6105

    [81]

    Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Naonotechol. 10 589

    [82]

    Koretsune T, Nagaosa N, Arita R 2015 Sci. Rep. 5 13302

    [83]

    Barla A, Wilhelm H, Forthaus M K, Strohm C, Rffer R, Schmidt M, Koepernik K, Rler U K, Abd-Elmeguid M M 2015 Phys. Rev. Lett. 114 016803

    [84]

    Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397

    [85]

    Wilhelm H, Leonov A O, Rler U K, Burger P, Hardy F, Meingast C, Gruner M E, Schnelle W, Schmidt M, Baenitz M 2016 Phys. Rev. B 94 144424

    [86]

    Xu L S, Fan J Y, Sun W F, Zhu Y, Hu D Z, Liu J D, Ji Y D, Shi D N, Yang H 2017 Appl. Phys. Lett. 111 052406

    [87]

    Hamann A, Lamago D, Wolf T, Lhneysen H V, Reznik D 2011 Phys. Rev. Lett. 107 037207

    [88]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [89]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [90]

    White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys.: Condens. Matter 24 432201

    [91]

    Živković I, White J S, Ronnow H M, Pra K, Berger H 2014 Phys. Rev. B 89 060401

    [92]

    Chattopadhyay M K, Roy S B, Chaudhary S 2002 Phys. Rev. B 65 132409

    [93]

    Jiang W J, Zhou X Z, Williams G 2010 Phys. Rev. B 82 144424

    [94]

    Zhang L, Menzel D, Han H, Jin C M, Du H F, Fan J Y, Ge M, Ling L S, Zhang C J, Pi L, Zhang Y H 2016 EPL 115 67006

    [95]

    Han H, Menzel D, Liu W, Ling L S, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2017 Mater. Res. Bull. 94 500

    [96]

    Li W, Jin C M, Che R C, Wei W S, Lin L S, Zhang L, Du H F, Tian M L, Zang J D 2016 Phys. Rev. B 93 060409

    [97]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [98]

    Moriya T 1960 Phys. Rev. 120 91

    [99]

    Battle P D, Grandjean F, Longc G J, Oldhama S E 2007 J. Mater. Chem. 17 4785

    [100]

    Han H, Wei W S, Liu W, Dai Y H, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2018 J. Alloys Compd. 739 85

    [101]

    Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, Kishine J 2012 Phys. Rev. Lett. 108 107202

    [102]

    Togawa Y, Kousaka Y, Inoue K, Kishine J 2016 J. Phys. Soc. Jpn. 85 112001

    [103]

    Masaki Y, Stamps R L 2017 Phys. Rev. B 95 024418

    [104]

    Han H, Zhang L, Sapkota D, Hao N, Ling L S, Du H F, Pi L, Zhang C J, Mandrus D G, Zhang Y H 2017 Phys. Rev. B 96 094439

    [105]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

  • [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [3]

    Jiang W J, Chen G, Liu K, Zang J D, Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1

    [4]

    Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovcs A, Zang J D, Tian M L, Zhang Y H, Du H F, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [5]

    Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Georgii R, Boni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [6]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [7]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901

    [8]

    Psaroudaki C, Hoffman S, Klinovaja J, Loss D 2017 Phys. Rev. X 7 041045

    [9]

    Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y 2017 Phys. Rev. Lett. 119 237201

    [10]

    Kharkov Y A, Sushkov O P, Mostovoy M 2017 Phys. Rev. Lett. 119 207201

    [11]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E, Hoffmann A 2015 Science 349 283

    [12]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippe E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561

    [13]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509

    [14]

    Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717

    [15]

    Mohseni S, Sani S, Persson J, Nguyen T, Chung S, Pogoryelov Y, Muduli P, Iacocca E, Eklund A, Dumas R, Bonetti S, Deac A, Hoefer M, Akerman J 2013 Science 339 1295

    [16]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [17]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [18]

    Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204

    [19]

    Rybakov F, Borisov A, Blge S, Kiselev N 2015 Phys. Rev. Lett. 115 117201

    [20]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [21]

    Brown G, Rho M 2010 The Multifaced Skyrmions (Singapore: World Scientific)

    [22]

    Bogdanov A N, Yablonskii D A 1989 Sov. Phys. JETP 68 101

    [23]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [24]

    Ishikawa Y, Arai M 1984 J. Phys. Soc. Jpn. 53 2726

    [25]

    Thessieu C, Pfleiderer C, Stepanov A N, Flouquet J 1997 J. Phys.: Condens. Matter 9 6677

    [26]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [27]

    Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417

    [28]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [29]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [30]

    Ding H F, Schmid A K, Li D Q, Guslienko K Y, Bader S D 2005 Phys. Rev. Lett. 94 157202

    [31]

    Sonntag A, HermenauJ, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202

    [32]

    Simon E, Palotas K, Rozsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410

    [33]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [34]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [35]

    Siegfried S A, Altynbaev E V, Chubova N M, Dyadkin V, Chernyshov D, Moskvin E V, Menze D, Heinemann A, Schreyer A, Grigorie S V 2015 Phys. Rev. B 91 184406

    [36]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 89

    [37]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [38]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [39]

    Yu X Z, Kanazawa N, Zhang W Z, Nnagai T, Hara T, Kimoto K, Mmatsui Y, Oonose Y, Tokura Y 2012 Nat. Commun. 3 988

    [40]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [41]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [42]

    Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p9 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第9 页]

    [43]

    Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p83 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第83页]

    [44]

    Jiang S T, Li W L 2003 Magnetic Physics in Condensed Matter (Beijing: Science Press) pp173-182 (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第173182页]

    [45]

    Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)

    [46]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740

    [47]

    Arrott A 1957 Phys. Rev. 108 1394

    [48]

    Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456

    [49]

    Levy L 2000 Magnetism and Superconductivity (Berlin: Springer)

    [50]

    Banerjee S 1964 Phys. Lett. 12 16

    [51]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J Alloys Compd. 508 238

    [52]

    Arrott A, Noakes J 1967 Phys. Rev. Lett. 19 786

    [53]

    Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L, Zhang Y H 2012 Phys. Rev. B 85 104419

    [54]

    Fisher M 1967 Rep. Prog. Phys. 30 615

    [55]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang H Y 2010 Phys. Rev. B 81 144426

    [56]

    Kouvel J, Fisher M 1964 Phys. Rev. A 136 1626

    [57]

    Pecharsky V, Gschneidner K 1999 J. Magn. Magn. Mater. 200 44

    [58]

    Franco V, Blazquez J, Conde A 2006 Appl. Phys. Lett. 89 222512

    [59]

    Franco V, Conde A 2010 Inter. J. Ref. 33 465

    [60]

    Fan J Y, Pi L, Zhang L, Tong W, Ling L S, Hong B, Shi Y G, Zhang W C, Lu D, Zhang Y H 2011 Appl. Phys. Lett. 98 072508

    [61]

    Han H, Zhang L, Zhu X D, Du H F, Ge M, Ling L S, Pi L, Zhang C J, Zhang Y H 2017 J. Alloys Compd. 693 389

    [62]

    Zhang L, Fan J Y, Tong W, Ling L S, Pi L, Zhang Y H 2012 Physica B 407 3543

    [63]

    Samatham S S, Ganesan V 2017 Phys. Rev. B 95 115118

    [64]

    Manyala N, Sidis Y, DiTusa J, Aeppli G, Young D, Fisk Z 2000 Nature 404 581

    [65]

    Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427

    [66]

    Watanabe H, Parameswaran S A, Raghu S, Vishwanath A 2014 Phys. Rev. B 90 045145

    [67]

    Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330

    [68]

    Janoschek M, Garst M, Bauer A, Krautscheid P, Georgii R, Boni P, Pfleiderer C 2013 Phys. Rev. B 87 134407

    [69]

    Buhrandt S, Fritz L 2013 Phys. Rev. B 88 195137

    [70]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley)

    [71]

    Bauer A, Garst M, Pfleiderer C 2013 Phys. Rev. Lett. 110 177207

    [72]

    Brazovskii S A, Eksp Z, Fiz T 1975 Sov. Phys. JETP 41 85

    [73]

    Zhang L, Menzel D, Jin C, Du H F, Ge M, Zhang C J, Pi L, Tian M L, Zhang Y H 2015 Phys. Rev. B 91 024403

    [74]

    Chattopadhyay M, Arora P, Roy S 2009 J. Phys.: Condens. Matter 21 296003

    [75]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917

    [76]

    Fischer S F, Kaul S N, Kronmuller H 2002 Phys. Rev. B 65 064443

    [77]

    Pramanik A K, Banerjee A 2009 Phys. Rev. B 79 214426

    [78]

    Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Boni P, Lamago D, Eckerlebe H, Pranzas K 2005 Phys. Rev. B 72 134420

    [79]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [80]

    Lebech B, Bernhard J, Freltoft T 1989 J. Phys.: Condens. Matter 1 6105

    [81]

    Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Naonotechol. 10 589

    [82]

    Koretsune T, Nagaosa N, Arita R 2015 Sci. Rep. 5 13302

    [83]

    Barla A, Wilhelm H, Forthaus M K, Strohm C, Rffer R, Schmidt M, Koepernik K, Rler U K, Abd-Elmeguid M M 2015 Phys. Rev. Lett. 114 016803

    [84]

    Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397

    [85]

    Wilhelm H, Leonov A O, Rler U K, Burger P, Hardy F, Meingast C, Gruner M E, Schnelle W, Schmidt M, Baenitz M 2016 Phys. Rev. B 94 144424

    [86]

    Xu L S, Fan J Y, Sun W F, Zhu Y, Hu D Z, Liu J D, Ji Y D, Shi D N, Yang H 2017 Appl. Phys. Lett. 111 052406

    [87]

    Hamann A, Lamago D, Wolf T, Lhneysen H V, Reznik D 2011 Phys. Rev. Lett. 107 037207

    [88]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [89]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [90]

    White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys.: Condens. Matter 24 432201

    [91]

    Živković I, White J S, Ronnow H M, Pra K, Berger H 2014 Phys. Rev. B 89 060401

    [92]

    Chattopadhyay M K, Roy S B, Chaudhary S 2002 Phys. Rev. B 65 132409

    [93]

    Jiang W J, Zhou X Z, Williams G 2010 Phys. Rev. B 82 144424

    [94]

    Zhang L, Menzel D, Han H, Jin C M, Du H F, Fan J Y, Ge M, Ling L S, Zhang C J, Pi L, Zhang Y H 2016 EPL 115 67006

    [95]

    Han H, Menzel D, Liu W, Ling L S, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2017 Mater. Res. Bull. 94 500

    [96]

    Li W, Jin C M, Che R C, Wei W S, Lin L S, Zhang L, Du H F, Tian M L, Zang J D 2016 Phys. Rev. B 93 060409

    [97]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [98]

    Moriya T 1960 Phys. Rev. 120 91

    [99]

    Battle P D, Grandjean F, Longc G J, Oldhama S E 2007 J. Mater. Chem. 17 4785

    [100]

    Han H, Wei W S, Liu W, Dai Y H, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2018 J. Alloys Compd. 739 85

    [101]

    Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, Kishine J 2012 Phys. Rev. Lett. 108 107202

    [102]

    Togawa Y, Kousaka Y, Inoue K, Kishine J 2016 J. Phys. Soc. Jpn. 85 112001

    [103]

    Masaki Y, Stamps R L 2017 Phys. Rev. B 95 024418

    [104]

    Han H, Zhang L, Sapkota D, Hao N, Ling L S, Du H F, Pi L, Zhang C J, Mandrus D G, Zhang Y H 2017 Phys. Rev. B 96 094439

    [105]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

  • [1] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [2] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [3] Wang Li, Liu Jing-Si, Li Ji, Zhou Xiao-Lin, Chen Xiang-Rong, Liu Chao-Fei, Liu Wu-Ming. The research progress of topological properties in spinor Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [4] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [5] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [6] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [7] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [8] Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan. Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations. Acta Physica Sinica, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [9] Huang Can, Li Xiao-Ying, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Shi Da-Ning, Ma Chun-Lan. First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface. Acta Physica Sinica, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [10] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [11] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [12] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [13] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [14] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [15] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [16] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [17] Cheng Guang-Li, Zhang Ming-Min, Hu Jin-Hua. A fast and more universal algorithm for an uncertain acoustic filed in shallow-water. Acta Physica Sinica, 2014, 63(8): 084301. doi: 10.7498/aps.63.084301
    [18] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [19] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] Bao Ke-Da, Yin Guang-Jun. . Acta Physica Sinica, 1995, 44(3): 451-459. doi: 10.7498/aps.44.451
Metrics
  • Abstract views:  8001
  • PDF Downloads:  478
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2018
  • Accepted Date:  12 March 2018
  • Published Online:  05 July 2018

/

返回文章
返回