Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

You Bing-Ling Liu Xue-Ying Cheng Shu-Jie Wang Chen Gao Xian-Long

Citation:

The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long
PDF
HTML
Get Citation
  • We use the mean field approximation method to study the quantum phase transitions of the Jaynes-Cummings lattice model and the Rabi lattice model. The effective Hamiltonians are obtained for the JC and Rabi model including the Kerr nonlinear term. Numerically we diagonalized the Hamiltonian matrix and calculated the superfluidity order parameter and the two-photon correlation function by solving the iteration equations.We have explored the Mott insulating-superfluid quantum phase transition, the bunching-antibunching behavior of light, and the effect of Kerr nonlinear term on the quantum phase transition and photon statistical characteristics. Our results show that in the JC lattice model, by increasing J, a quantum phase transition takes place and the system is driven to a superfluid phase. The phase boundaries of the Mott lobes are N-dependent. However the photon will always be in a bunching statistical behavior irrelevant of the coupling strength between the two-level atom and the phonton and the nonlinear Kerr effect.In the Rabi lattice model, the anti-rotating wave term breaks Mott-lobe structure of the phase diagram and the increase of the two-level atom and photon interaction strength g and the photon transition strength J between the lattices drive the system from the Mott insulating phase to the superfluid phase. The photon statistical behavior changes from the bunching to the antibunching one when considering the anti-rotating wave term, which is important in the strongly coupled systems. Most interestingly, the increase of the Kerr nonlinear coefficient will inhibit the Mott insulating phase-superfluid phase transition, but favor the superfluid phase and the transition from the bunching to anti-bunching statistics.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774316, 11704093).
    [1]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849Google Scholar

    [2]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [3]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [4]

    Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401Google Scholar

    [5]

    Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401Google Scholar

    [6]

    Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803Google Scholar

    [7]

    Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601Google Scholar

    [8]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403Google Scholar

    [9]

    Koch J, Le Hur K 2009 Phys. Rev. A 80 023811Google Scholar

    [10]

    Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612Google Scholar

    [11]

    Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841Google Scholar

    [12]

    Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [13]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [14]

    Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [16]

    Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490Google Scholar

    [17]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [18]

    Schmidt S, Koch J 2013 Ann. Phys. 525 395Google Scholar

    [19]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [20]

    Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95

    [21]

    Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [22]

    van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601Google Scholar

    [23]

    van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606Google Scholar

    [24]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257Google Scholar

    [25]

    Krauth W, Trivedi N 1991 Europhys. Lett. 14 627Google Scholar

    [26]

    Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307Google Scholar

    [27]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [28]

    Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606Google Scholar

    [29]

    Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401Google Scholar

    [30]

    Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406Google Scholar

    [31]

    Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405Google Scholar

    [32]

    Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23

    [33]

    Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597Google Scholar

    [34]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [35]

    Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415Google Scholar

    [36]

    Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445Google Scholar

    [37]

    Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003Google Scholar

    [38]

    Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554Google Scholar

    [39]

    Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008Google Scholar

    [40]

    Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502Google Scholar

    [41]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936Google Scholar

    [42]

    Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611Google Scholar

    [43]

    Niu Y, Gong S 2006 Phys. Rev. A 73 053811Google Scholar

    [44]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [45]

    Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799

  • 图 1  (a), (b)平均场近似下, 不同晶格模型关于超流序参量$ A = \braket{a} $$ J \text {-} g $相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为格点之间的光子跃迁强度$ J $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示超流序参量$ A = \braket{a} $的大小. 深蓝色表示Mott绝缘相, 浅黄色表示超流体相. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, 光子截断数$ N = 20 $. (c), (d)对于不同的$ J $, 不同晶格模型的超流序参量$ A $$ g $变化的图像 (c) JC晶格模型; (d) Rabi晶格模型

    Figure 1.  (a), (b) Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the superfluid order parameter $ A = \braket{a} $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of the superfluid order parameter $ A = \braket{a} $. Dark blue indicates Mott insulating phase, and light yellow indicates superfluid phase. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, and the number of the photon truncation $ N = 20 $. (c), (d) For different $ J $, the superfluid order parameter $ A $ of different lattice models varies with $ g $: (c) JC lattice model; (d) Rabi lattice model.

    图 2  平均场近似下, 不同晶格模型关于二阶关联函数$ g^{2}(0) $$J\text {-} g$相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为格点之间的光子跃迁强度$ J $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示二阶关联函数$ g^{2}(0) $ 的值. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, 光子截断数$ N = 20 $

    Figure 2.  Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the second-order correlation function $ g^{2}(0) $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, the color bar is represented by the value of the second-order correlation function $ g^{2}(0) $. $ \mathop{\omega_{0} = \omega_{1}} = 1 $, and the number of photon truncation $ N = 20 $.

    图 3  Kerr效应下不同晶格模型关于超流序参量$ A = \braket{a} $$ \kappa \text {-} g $相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为Kerr非线性强度$ \kappa $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示超流序参量$ A $的大小. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, 光子截断数$ N = 20 $

    Figure 3.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the superfluid order parameter $ A = \braket{a} $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of the superfluid order parameter $ A $. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, and the number of photon truncation $ N = 20 $.

    图 4  Kerr效应下不同晶格模型关于二阶关联函数$ g^{2}(0) $$ \kappa \text {-} g $相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为Kerr非线性强度$ \kappa $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示二阶关联函数$ g^{2}(0) $. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, 光子截断数$ N = 20 $

    Figure 4.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the second-order correlation function $ g^{2}(0) $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of second-order correlation function $ g^{2}(0) $. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, and the number of photon truncation $ N = 20 $.

  • [1]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849Google Scholar

    [2]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [3]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [4]

    Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401Google Scholar

    [5]

    Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401Google Scholar

    [6]

    Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803Google Scholar

    [7]

    Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601Google Scholar

    [8]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403Google Scholar

    [9]

    Koch J, Le Hur K 2009 Phys. Rev. A 80 023811Google Scholar

    [10]

    Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612Google Scholar

    [11]

    Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841Google Scholar

    [12]

    Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [13]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [14]

    Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [16]

    Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490Google Scholar

    [17]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [18]

    Schmidt S, Koch J 2013 Ann. Phys. 525 395Google Scholar

    [19]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [20]

    Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95

    [21]

    Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [22]

    van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601Google Scholar

    [23]

    van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606Google Scholar

    [24]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257Google Scholar

    [25]

    Krauth W, Trivedi N 1991 Europhys. Lett. 14 627Google Scholar

    [26]

    Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307Google Scholar

    [27]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [28]

    Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606Google Scholar

    [29]

    Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401Google Scholar

    [30]

    Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406Google Scholar

    [31]

    Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405Google Scholar

    [32]

    Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23

    [33]

    Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597Google Scholar

    [34]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [35]

    Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415Google Scholar

    [36]

    Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445Google Scholar

    [37]

    Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003Google Scholar

    [38]

    Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554Google Scholar

    [39]

    Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008Google Scholar

    [40]

    Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502Google Scholar

    [41]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936Google Scholar

    [42]

    Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611Google Scholar

    [43]

    Niu Y, Gong S 2006 Phys. Rev. A 73 053811Google Scholar

    [44]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [45]

    Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] Sun Zhen-Hui, Hu Li-Zhen, Xu Yu-Liang, Kong Xiang-Mu. Quantum coherence and mutual information of mixed spin-(1/2, 5/2) Ising-XXZ model on quasi-one-dimensional lattices. Acta Physica Sinica, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [4] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [5] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [6] Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity. Acta Physica Sinica, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [7] Bao An. Mott transition of fermions in anisotropic ruby lattice. Acta Physica Sinica, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [8] Wen Kai, Wang Liang-Wei, Zhou Fang, Chen Liang-Chao, Wang Peng-Jun, Meng Zeng-Ming, Zhang Jing. Experimental realization of Mott insulator of ultracold 87Rb atoms in two-dimensional optical lattice. Acta Physica Sinica, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [9] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [10] Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [11] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [12] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] Zhao Hong-Xia, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Phase diagram of the one-dimensional extended ionic Hubbard model. Acta Physica Sinica, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [14] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] Li Yuan, Li Gang, Zhang Yu-Chi, Wang Xiao-Yong, Wang Jun-Min, Zhang Tian-Cai. The effect of counting rate and time resolution on the measured photon statistical properties—— Experimental study of direct measurement via SPCM. Acta Physica Sinica, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [17] Wang Xiao-Bo, Huang Tao, Shao Jun-Hu, Jiang Yu-Qiang, Xiao Lian-Tuan, Jia Suo-Tang. Determination of signal-to-background ratio of single molecular photon source based on photon counting statistics. Acta Physica Sinica, 2005, 54(2): 617-621. doi: 10.7498/aps.54.617
    [18] LIANG WEN-QING, CHU KAI-QIN, ZHANG ZHI-MING, XIE SHENG-WU. MICROMASER INJECTED WITH ULTRA-COLD V-TYPE THREE-LEVEL ATOMS:EFFECTS OF ATOMIC COHERENCE ON PHOTON STATISTICS. Acta Physica Sinica, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [19] GU QIAO. THE QUANTUM STATISTICAL PROPERTIES OF THE JAYNES-CUMMINGS MODEL. Acta Physica Sinica, 1989, 38(5): 735-744. doi: 10.7498/aps.38.735
    [20] LI XIAO-SHEN. A QUANTUM-STATISTICAL THREE-LEVEL CASCADE JAYNES-CUMMINGS MODEL. Acta Physica Sinica, 1985, 34(6): 833-840. doi: 10.7498/aps.34.833
Metrics
  • Abstract views:  8054
  • PDF Downloads:  372
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2020
  • Accepted Date:  04 January 2021
  • Available Online:  06 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回