Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction

Yi Tian-Cheng Ding Yue-Ran Ren Jie Wang Yi-Min You Wen-Long

Citation:

Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction

Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we study the quantum coherence of one-dimensional transverse XY model with Dzyaloshinskii-Moriya interaction, which is given by the following Hamiltonian:HXY=∑i=1N((1+γ/2) σixσi+1x+(1-γ/2) σiyσi+1y-hσiz) ∑i=1ND(σixσi+1y-σiyσi+1x).(8)Here, 0 ≤ γ ≤ 1 is the anisotropic parameter, h is the magnitude of the transverse magnetic field, D is the strength of Dzyaloshinskii-Moriya (DM) interaction along the z direction. The limiting cases such as γ=0 and 1 reduce to the isotropic XX model and the Ising model, respectively. We use the Jordan-Winger transform to map explicitly spin operators into spinless fermion operators, and then adopt the discrete Fourier transform and the Bogoliubov transform to solve the Hamiltonian Eq.(8) analytically. When the DM interactions appear, the excitation spectrum becomes asymmetric in the momentum space and is not always positive, and thus a gapless chiral phase is induced. Based on the exact solutions, three phases are identified by varying the parameters:antiferromagnetic phase, paramagnetic phase, and gapless chiral phase. The antiferromagnetic phase is characterized by the dominant x-component nearest correlation function, while the paramagnetic phase can be characterized by the z component of spin correlation function. The two-site correlation functions Grxy and Gryx (r is the distance between two sites) are nonvanishing in the gapless chiral phase, and they act as good order parameters to identify this phase. The critical lines correspond to h=1, γ=2D, and h=√4D2 -γ2 + 1 for γ>0. When γ=0, there is no antiferromagnetic phase. We also find that the correlation functions undergo a rapid change across the quantum critical points, which can be pinpointed by the first-order derivative. In addition, Grxy decreases oscillatingly with the increase of distance r. The correlation function Grxy for γ=0 oscillates more dramatically than for γ=1. The upper boundary of the envelope is approximated as Grxy~r-1/2, and the lower boundary is approximately Grxy~r-3/2, so the long-range order is absent in the gapless chiral phase. Besides, we study various quantum coherence measures to quantify the quantum correlations of Eq.(8). One finds that the relative entropy CRE and the Jensen-Shannon entropy CJS are able to capture the quantum phase transitions, and quantum critical points are readily discriminated by their first derivative. We conclude that both quantum coherence measures can well signify the second-order quantum phase transitions. Moreover, we also point out a few differences in deriving the correlation functions and the associated density matrix in systems with broken reflection symmetry.
      Corresponding author: You Wen-Long, wlyou@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474211, 61674110, 11374043, 11404407).
    [1]

    Alexander S, Uttam S, Himadri S D, Manabendra N B, Gerardo A 2015 Phys. Rev. Lett. 115 020403

    [2]

    Alexander S, Gerardo A, Martin B P 2017 Rev. Mod. Phys. 89 041003

    [3]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [4]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform. 5 335

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Wooters W K, Zurek W H 1982 Nature 299 802

    [7]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [8]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110

    [9]

    Gu S J, Lin H Q, Li Y Q 2003 Phys. Rev. A 68 042330

    [10]

    Vidal G, Latorre G I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [11]

    Vidal J, Palacios G, Mosseri R 2004 Phys. Rev. A 69 022107

    [12]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [13]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [14]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [15]

    Gu S J, Int J 2010 Mod. Phys. B 24 4371

    [16]

    Eisert J, Cramer M, Plenio M B 2010 Rev. Mod. Phys. 82 277

    [17]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407

    [18]

    Lorenzo C V, Marco R 2010 Phys. Rev. A 81 060101

    [19]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432

    [20]

    Toskovic R, van-den Berg R, Spinelli A, Eliens I S, van-den Toorn B, Bryant B, Caux J S, Otte A F 2016 Nat. Phys. 12 656

    [21]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [22]

    Moriya T 1960 Phys. Rev. Lett. 4 288

    [23]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [24]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [25]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [26]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [27]

    Povarov K Y, Smirnov A I, Starykh O A, Petrov S V, Shapiro A Y 2011 Phys. Rev. Lett. 107 037204

    [28]

    Zhang X F, Liu T Y, Flatté M E, Tang H X 2014 Phys. Rev. Lett. 113 037202

    [29]

    You W L, Dong Y L 2010 Eur. Phys. J. D 57 439

    [30]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

    [31]

    You W L, Liu G H, Horsch P, Oleś A M 2014 Phys. Rev. B 90 094413

    [32]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]

    [33]

    Zhong M, Xu H, Liu X X, Tong P Q 2013 Chin. Phys. B 22 090313

    [34]

    Song J L, Zhong M, Tong P Q 2017 Acta Phys. Sin. 66 180302 (in Chinese) [宋加丽, 钟鸣, 童培庆 2017 物理学报 66 180302]

    [35]

    Brockmann M, Klumper A, Ohanyan V 2013 Phys. Rev. B 87 054407

    [36]

    Derzhko O, Verkholyak T, Krokhmalskii T, Bttner H 2006 Phys. Rev. B 73 214407

    [37]

    Barouch E, McCoy B M 1970 Phys. Rev. A 2 1075

    [38]

    Barouch E, McCoy B M 1971 Phys. Rev. A 3 786

    [39]

    Its A R, Izergin A G, Korepin V E, Slavnov N A 1993 Phys. Rev. Lett. 70 1704

    [40]

    Bunder J E, McKenzie R H 1999 Phys. Rev. B 60 344

    [41]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [42]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [43]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [44]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [45]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341

    [46]

    You W L, Qiu Y C, Oleś A M 2016 Phys. Rev. B 93 214417

    [47]

    You W L, Zhang C J, Ni W, Gong M, Oleś A M 2017 Phys. Rev. B 95 224404

    [48]

    Lei S, Tong P 2015 Physica B 463 1

    [49]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [50]

    Chen J, Cui J, Zhang Y, Fan H 2016 Phys. Rev. A 94 022112

    [51]

    Lamberti P W, Majtey A P, Borras A, Casas M, Plastino A 2008 Phys. Rev. A 77 052311

  • [1]

    Alexander S, Uttam S, Himadri S D, Manabendra N B, Gerardo A 2015 Phys. Rev. Lett. 115 020403

    [2]

    Alexander S, Gerardo A, Martin B P 2017 Rev. Mod. Phys. 89 041003

    [3]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [4]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform. 5 335

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Wooters W K, Zurek W H 1982 Nature 299 802

    [7]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [8]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110

    [9]

    Gu S J, Lin H Q, Li Y Q 2003 Phys. Rev. A 68 042330

    [10]

    Vidal G, Latorre G I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [11]

    Vidal J, Palacios G, Mosseri R 2004 Phys. Rev. A 69 022107

    [12]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [13]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [14]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [15]

    Gu S J, Int J 2010 Mod. Phys. B 24 4371

    [16]

    Eisert J, Cramer M, Plenio M B 2010 Rev. Mod. Phys. 82 277

    [17]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407

    [18]

    Lorenzo C V, Marco R 2010 Phys. Rev. A 81 060101

    [19]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432

    [20]

    Toskovic R, van-den Berg R, Spinelli A, Eliens I S, van-den Toorn B, Bryant B, Caux J S, Otte A F 2016 Nat. Phys. 12 656

    [21]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [22]

    Moriya T 1960 Phys. Rev. Lett. 4 288

    [23]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [24]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [25]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [26]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [27]

    Povarov K Y, Smirnov A I, Starykh O A, Petrov S V, Shapiro A Y 2011 Phys. Rev. Lett. 107 037204

    [28]

    Zhang X F, Liu T Y, Flatté M E, Tang H X 2014 Phys. Rev. Lett. 113 037202

    [29]

    You W L, Dong Y L 2010 Eur. Phys. J. D 57 439

    [30]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

    [31]

    You W L, Liu G H, Horsch P, Oleś A M 2014 Phys. Rev. B 90 094413

    [32]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]

    [33]

    Zhong M, Xu H, Liu X X, Tong P Q 2013 Chin. Phys. B 22 090313

    [34]

    Song J L, Zhong M, Tong P Q 2017 Acta Phys. Sin. 66 180302 (in Chinese) [宋加丽, 钟鸣, 童培庆 2017 物理学报 66 180302]

    [35]

    Brockmann M, Klumper A, Ohanyan V 2013 Phys. Rev. B 87 054407

    [36]

    Derzhko O, Verkholyak T, Krokhmalskii T, Bttner H 2006 Phys. Rev. B 73 214407

    [37]

    Barouch E, McCoy B M 1970 Phys. Rev. A 2 1075

    [38]

    Barouch E, McCoy B M 1971 Phys. Rev. A 3 786

    [39]

    Its A R, Izergin A G, Korepin V E, Slavnov N A 1993 Phys. Rev. Lett. 70 1704

    [40]

    Bunder J E, McKenzie R H 1999 Phys. Rev. B 60 344

    [41]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [42]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [43]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [44]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [45]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341

    [46]

    You W L, Qiu Y C, Oleś A M 2016 Phys. Rev. B 93 214417

    [47]

    You W L, Zhang C J, Ni W, Gong M, Oleś A M 2017 Phys. Rev. B 95 224404

    [48]

    Lei S, Tong P 2015 Physica B 463 1

    [49]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [50]

    Chen J, Cui J, Zhang Y, Fan H 2016 Phys. Rev. A 94 022112

    [51]

    Lamberti P W, Majtey A P, Borras A, Casas M, Plastino A 2008 Phys. Rev. A 77 052311

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [3] Yu Juan, Zhang Yan, Wu Yin-Hua, Yang Wen-Hai, Yan Zhi-Hui, Jia Xiao-Jun. Experimental demonstration on quantum coherence evolution of two-mode squeezed state. Acta Physica Sinica, 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [4] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [5] Dong Yao, Ji Ai-Ling, Zhang Guo-Feng. Evolution of quantum coherence of qutrit-qutrit system under correlated depolarizing channels. Acta Physica Sinica, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [6] You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model. Acta Physica Sinica, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [7] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [8] Liu Biao, Zhou Xiao-Fan, Chen Gang, Jia Suo-Tang. Current phases in Hofstadter ladder with staggered hopping. Acta Physica Sinica, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [9] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [10] Huang Shan, Liu Ni, Liang Jiu-Qing. Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity. Acta Physica Sinica, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [11] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [12] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] Ye Shi-Qiang, Chen Xiao-Yu. Four-partite Bell inequalities based on quantum coherence. Acta Physica Sinica, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [14] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] Liu Ni. Quantum phase transition of a Bose-Einstein condensate in an optical cavity driven by a laser field. Acta Physica Sinica, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [16] Shan Chuan-Jia. Berry phase and quantum phase transition in spin chain system with three-site interaction. Acta Physica Sinica, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [17] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Ferromagnetic quantum phase transition in Co(S1-xSex)2 system. Acta Physica Sinica, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [19] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Antiferromagnetic quantum phase transition near x=1.00 in NiS2-xSex system. Acta Physica Sinica, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] Shi Zhu-Yi, Tong Hong, Shi Zhu-Ya, Zhang Chun-Mei, Zhao Xing-Zhi, Ni Shao-Yong. A possible route of nuclear quantum phase transition induced by rotation. Acta Physica Sinica, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
Metrics
  • Abstract views:  7297
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2018
  • Accepted Date:  03 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回