Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity

Zhou Xiao-Fan Fan Jing-Tao Chen Gang Jia Suo-Tang

Citation:

Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity

Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang
PDF
HTML
Get Citation
  • Using a state-of-the-art numerical method density-matrix renormalization-group, we study the ground states of one-dimensional spinless Bose-Hubbard model inside a red-detuned cavity. By calculating the superfluid order, density distribution, second and third-order correlation functions, we find that there exist two novel supersolid phases with diagonal, off-diagonal orders beyond mean-field theory. One has package type density modulation along the lattice axis, another exhibits uniform density distribution. Moreover, by calculating the superradiant order parameter and the number of photon inside the cavity, we find that the novel supersolid phases are highly related to cavity-field fluctuation. Our work gives the physics beyond the mean-field theory of the Bose-Hubbard model inside an optical cavity, and provides the complete approach to fully explore the collective state of light and matter inside an optical cavity.
      Corresponding author: Fan Jing-Tao, fanjt@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11674200, 12074232, 12004230, 11804204), the Fund for Shanxi “1331 Project” Key Subjects Construction, and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. HGKY2019003)
    [1]

    Bloch I, Dalibard J, Nascimbane S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [3]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [5]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [6]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [7]

    Nagy D, Konya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

    [8]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [9]

    Mottl R, Brennecke F, Baumann K, Landig R, Donner T, Esslinger T 2012 Science 336 1570Google Scholar

    [10]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [11]

    Lang J, Piazza F, Zwerger W 2017 New J. Phys. 19 123027Google Scholar

    [12]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [13]

    Bakhtiari M R, Hemmerich A, Ritsch H, Thorwart M 2015 Phys. Rev. Lett. 114 123601Google Scholar

    [14]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [15]

    Niederle A E, Morigi G, Rieger H 2016 Phys. Rev. A 94 033607Google Scholar

    [16]

    Sundar B, Mueller E J 2016 Phys. Rev. A 94 033631Google Scholar

    [17]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [18]

    Panas J, Kauch A, Byczuk K 2017 Phys. Rev. B 95 115105Google Scholar

    [19]

    Flottat T, de Forges de Parny L, Hebert F, Rousseau V G, Batrouni G G 2017 Phys. Rev. B 95 144501Google Scholar

    [20]

    Bogner B, Danilo C D, Rieger H 2019 Eur. Phys. J. B 92 111Google Scholar

    [21]

    Boninsegni M, Prokofev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [22]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [23]

    Otterlo A V, Wagenblast K H 1994 Phys. Rev. Lett. 72 3598Google Scholar

    [24]

    Batrouni G G, Scalettar R T, Zimanyi G T, Kampf A P 1995 Phys. Rev. Lett. 74 2527Google Scholar

    [25]

    Scalettar R T, Batrouni G G, Kampf A P, Zimanyi G T 1995 Phys. Rev. B 51 8467Google Scholar

    [26]

    Otterlo A V, Wagenblast K H, Baltin R, Bruder C, Fazio R, Schon G 1995 Phys. Rev. B 52 16176Google Scholar

    [27]

    Rossini D, Fazio R 2011 New J. Phys. 14 065012

    [28]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [29]

    Schollwok U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [30]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [31]

    Hodgman S S, Dall R G, Manning A G, Baldwin K G H, Truscott A G 2011 Science 331 1046Google Scholar

    [32]

    Liu H C 2016 Phys. Rev. A 94 023827Google Scholar

    [33]

    Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J, Schmiedmayer J 2017 Nature 545 323Google Scholar

    [34]

    Hodgman S S, Khakimov R I, Truscott A G, Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402Google Scholar

    [35]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Leonard J, Greiner M 2019 Nature 573 385Google Scholar

    [36]

    Fan J, Zhou X, Zheng W, Yi W, Chen G, Jia S 2018 Phys. Rev. A 98 043613Google Scholar

    [37]

    Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 82 4569Google Scholar

    [38]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [39]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

  • 图 1  左图: 玻色原子沿着腔轴方向$\hat x$被俘获在准一维(1D)背景光学晶格中, 费米气被两束圆偏振的横向(沿着$\hat z$方向) 抽运激光驱动. 右图: 隧穿系数t, 接触型相互作用${U_{\rm{s}}}$和无限长程相互作用${U_{\rm{l}}}$

    Figure 1.  Left: Proposed experimental setup that the bosonic atoms trapped in a quasi-1D optical lattice interact with an optical cavity. Right: Illustration of the competing terms among the hopping t, the contact interaction ${U_{\rm{s}}}$ and the global-range interaction ${U_{\rm{l}}}$.

    图 2  (a1), (b1), (c1)超流序$G(r)$和插图$n(k)$; (a2), (b2), (c2)密度分布$\left\langle {{{\hat n}_j}} \right\rangle $; (a3), (b3), (c3)二阶关联${D^2}(l, j)$; (a4), (b4), (c4)三阶关联${D^3}\left( {i, l, j} \right)$. (a1)—(a3) 超固0相, 相互作用参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 6$; (b1)—(b3) 超固1相, 相互作用参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (c1)—(c3) 超固2相, 相互作用参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$L = 96$, $\rho = 0.4375$

    Figure 2.  (a1), (b1), (c1) Superfluid order $G(r)$ and $n(k)$; (a2), (b2), (c2) density profile $\left\langle {{{\hat n}_j}} \right\rangle $; (a3), (b3), (c3) two order correlation ${D^2}\left( {l, j} \right)$; (a4), (b4), (c4) three order correlation ${D^3}\left( {i, l, j} \right)$ for $i = j$ of (a1)–(a3) supersolid 0 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 6$, (b1)–(b3) supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$, and (c1)–(c3) supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $L = 96$ and $\rho = 0.4375$.

    图 3  (a1), (b1)不同尺寸下的超流序$G(r)$, 插图为冥率的有限尺寸分析; (a2), (b2) $n(k = 0){{/}}L$ 的有限尺寸分析. (a1), (a2)超固1相, 参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (b1), (b2) 超固2相, 参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$\rho = 0.4375$

    Figure 3.  (a1), (b1) Superfluid order $G(r)$ of several lattice length. The inset is the finite-size scaling of the decay rate. (a2), (b2) Finite-size scaling of $n(k = 0){{/}}L$. (a1), (a2) Supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$. (b1), (b2) Supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $\rho = 0.4375$.

    图 4  (a1)—(a3)和(b1)—(b3)密度分布$\left\langle {{{\hat n}_j}} \right\rangle $; (a4), (b4) ${\nu _{{\rm{peak}}}}$的有限尺寸分析. (a1)—(a4) 超固1相, 参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (b) 超固2相, 参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. (a1), (b1) $L = 80$; (a2), (b2) $L = 64$; (a3), (b3) $L = 48$. 所有图中, 共有参数$\rho = 0.4375$

    Figure 4.  (a1) –(a3) and (b1) –(b3) the density profile $\left\langle {{{\hat n}_j}} \right\rangle $; (a4), (b4) the finite-size scaling of the ${\nu _{{\rm{peak}}}}$. (a1)–(a4) Supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$; (b1)–(b4) supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. (a1), (b1) $L = 80$; (a2), (b2) $L = 64$; (a3), (b3) $L = 48$. In all subfigure, we have $\rho = 0.4375$.

    图 5  $S(k = {\text{π}})$(黑色实线)和 ${\nu _{{\rm{peak}}}}$(蓝色方块) (a) 关于${U_{\rm{l}}}$的变化, 固定${U_{\rm{s}}} = 10$; (c) 关于${U_{\rm{s}}}$ 的变化, 固定${U_{\rm{l}}} = 4.4$. 平均光子数${\left| {\left\langle {\hat a} \right\rangle } \right|^2}$和腔中的光子数$\left\langle {{{\hat a}^{\dagger} }\hat a} \right\rangle $关于 (b) 关于${U_{\rm{l}}}$的变化, 固定${U_{\rm{s}}} = 10$; (d) 关于${U_{\rm{s}}}$的变化, 固定${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$L = 96$$\rho = 0.4375$. SF表示超流, MI表示莫特绝缘体, CDW表示电荷密度波, SS0表示超固0相, SS1表示超固1相, SS2表示超固2相

    Figure 5.  The $S(k = {\text{π}})$(black solid line) and ${\nu _{{\rm{peak}}}}$(blue square) as function of (a) ${U_{\rm{l}}}$ with ${U_{\rm{s}}} = 10$, and (c) ${U_{\rm{s}}}$ with ${U_{\rm{l}}} = 4.4$. The number of cavity photons $\left\langle {{{\hat a}^{\dagger} }\hat a} \right\rangle $ and mean cavity-field ${\left| {\left\langle {\hat a} \right\rangle } \right|^2}$ as a function of (b) ${U_{\rm{l}}}$ with ${U_{\rm{s}}} = 10$, (d) ${U_{\rm{s}}}$ with ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $L = 96$ and $\rho = 0.4375$. SF denotes superfluid, MI denotes Mott insulator, CDW denotes charge density wave, SS0 denotes supersolid 0, SS1 denotes supersolid 1, SS2 denotes supersolid 2.

    图 6  (a)—(c) ${U_{\rm{l}}}$-ρ平面的相图 (a) ${U_{\rm{s}}} = 0$; (b) ${U_{\rm{s}}} = 5$; (c) ${U_{\rm{s}}} = 10$. (d) ${U_{\rm{l}}}$-${U_{\rm{s}}}$平面的相图, 参数$\rho = 0.4375$. 所有图中, 共有参数$L = 96$. SF表示超流, MI表示莫特绝缘体, CDW表示电荷密度波, SS0表示超固0相, SS1表示超固1相, SS2表示超固2相

    Figure 6.  (a)–(c) Phase-diagram between ${U_{\rm{l}}}$ and ρ with (a) ${U_{\rm{s}}} = 0$, (b) ${U_{\rm{s}}} = 5$ and (c) ${U_{\rm{s}}} = 10$. (d) Phase-diagram between ${U_{\rm{l}}}$ and ${U_{\rm{s}}}$, with filling $\rho = 0.4375$. In all subfigure, we have $L = 96$. SF denotes superfluid, MI denotes Mott insulator, CDW denotes charge density wave, SS0 denotes supersolid 0, SS1 denotes supersolid 1, SS2 denotes supersolid 2.

    表 1  量子相对应的序参量

    Table 1.  Corresponding orders of the phases.

    序/相简写超流SF莫特绝缘体MI电荷密度波CDW超固0相SS0超固1相SS1超固2相SS2
    $n~(k = 0)$> 000> 0> 0> 0
    $S~(k = {\text{π} })$00> 0> 0> 0> 0
    ${\nu _{{\rm{peak}}}}$00ππ$(0, {\text{π}})$0
    DownLoad: CSV
  • [1]

    Bloch I, Dalibard J, Nascimbane S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [3]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [5]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [6]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [7]

    Nagy D, Konya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

    [8]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [9]

    Mottl R, Brennecke F, Baumann K, Landig R, Donner T, Esslinger T 2012 Science 336 1570Google Scholar

    [10]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [11]

    Lang J, Piazza F, Zwerger W 2017 New J. Phys. 19 123027Google Scholar

    [12]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [13]

    Bakhtiari M R, Hemmerich A, Ritsch H, Thorwart M 2015 Phys. Rev. Lett. 114 123601Google Scholar

    [14]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [15]

    Niederle A E, Morigi G, Rieger H 2016 Phys. Rev. A 94 033607Google Scholar

    [16]

    Sundar B, Mueller E J 2016 Phys. Rev. A 94 033631Google Scholar

    [17]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [18]

    Panas J, Kauch A, Byczuk K 2017 Phys. Rev. B 95 115105Google Scholar

    [19]

    Flottat T, de Forges de Parny L, Hebert F, Rousseau V G, Batrouni G G 2017 Phys. Rev. B 95 144501Google Scholar

    [20]

    Bogner B, Danilo C D, Rieger H 2019 Eur. Phys. J. B 92 111Google Scholar

    [21]

    Boninsegni M, Prokofev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [22]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [23]

    Otterlo A V, Wagenblast K H 1994 Phys. Rev. Lett. 72 3598Google Scholar

    [24]

    Batrouni G G, Scalettar R T, Zimanyi G T, Kampf A P 1995 Phys. Rev. Lett. 74 2527Google Scholar

    [25]

    Scalettar R T, Batrouni G G, Kampf A P, Zimanyi G T 1995 Phys. Rev. B 51 8467Google Scholar

    [26]

    Otterlo A V, Wagenblast K H, Baltin R, Bruder C, Fazio R, Schon G 1995 Phys. Rev. B 52 16176Google Scholar

    [27]

    Rossini D, Fazio R 2011 New J. Phys. 14 065012

    [28]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [29]

    Schollwok U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [30]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [31]

    Hodgman S S, Dall R G, Manning A G, Baldwin K G H, Truscott A G 2011 Science 331 1046Google Scholar

    [32]

    Liu H C 2016 Phys. Rev. A 94 023827Google Scholar

    [33]

    Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J, Schmiedmayer J 2017 Nature 545 323Google Scholar

    [34]

    Hodgman S S, Khakimov R I, Truscott A G, Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402Google Scholar

    [35]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Leonard J, Greiner M 2019 Nature 573 385Google Scholar

    [36]

    Fan J, Zhou X, Zheng W, Yi W, Chen G, Jia S 2018 Phys. Rev. A 98 043613Google Scholar

    [37]

    Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 82 4569Google Scholar

    [38]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [39]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [3] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] Bao An. Mott transition of fermions in anisotropic ruby lattice. Acta Physica Sinica, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [5] You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model. Acta Physica Sinica, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [6] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [7] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [9] Huang Shan, Liu Ni, Liang Jiu-Qing. Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity. Acta Physica Sinica, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [10] Ren Jie, Gu Li-Ping, You Wen-Long. Fidelity susceptibility and entanglement entropy in S=1 quantum spin chain with three-site interactions. Acta Physica Sinica, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [11] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [12] Mao Bin-Bin, Cheng Chen, Chen Fu-Zhou, Luo Hong-Gang. Phase separation induced by density-spin interaction in one-dimensional extended t-J model. Acta Physica Sinica, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [13] Zhao Hong-Xia, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Phase diagram of the one-dimensional extended ionic Hubbard model. Acta Physica Sinica, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [14] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] Liu Ni. Quantum phase transition of a Bose-Einstein condensate in an optical cavity driven by a laser field. Acta Physica Sinica, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [16] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [17] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Antiferromagnetic quantum phase transition near x=1.00 in NiS2-xSex system. Acta Physica Sinica, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [19] Zhang Song-Jun, Jiang Jian-Jun, Liu Yong-Jun. Quantum phase transition as a result of magnetic frustrations in a ferrimagnetic Heisenberg system. Acta Physica Sinica, 2008, 57(1): 531-534. doi: 10.7498/aps.57.531
    [20] Shi Zhu-Yi, Tong Hong, Shi Zhu-Ya, Zhang Chun-Mei, Zhao Xing-Zhi, Ni Shao-Yong. A possible route of nuclear quantum phase transition induced by rotation. Acta Physica Sinica, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
Metrics
  • Abstract views:  5593
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2021
  • Accepted Date:  17 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回