Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological order and fractionalized excitations in quantum many-body systems

Gu Zhao-Long Li Jian-Xin

Citation:

Topological order and fractionalized excitations in quantum many-body systems

Gu Zhao-Long, Li Jian-Xin
PDF
HTML
Get Citation
  • The Landau Fermi liquid theory and the Ginzburg-Landau phase transition theory stand as two pivotal cornerstones in traditional condensed matter physics, achieving significant success in addressing crucial physical phenomena such as BCS superconductors and liquid helium superfluids. However, marked by the discoveries of the quantum Hall effect and high-temperature superconductivity in the 1980s, it gradually became evident that for a broad class of novel quantum states, such as fractional quantum Hall states and quantum spin liquids, their properties transcend the Landau Fermi liquid theory and Ginzburg-Landau phase transition theory. Topological order and its related concepts of long-range many-body quantum entanglement and fractionalized excitation have become the key concepts to understand these exotic quantum states. Designing and identifying topologically ordered states of matter in quantum materials and quantum simulation systems, and probing and manipulating their fractionalized excitations, are important research directions in modern condensed matter physics. In recent years, great progress has been made in the quantum simulation and manipulation of topological order on highly controllable quantum simulation platforms, such as Rydberg atomic systems, superconducting quantum processors, and two-dimensional moiré superlattices. This article provides a brief overview of recent research advances and challenges in the study of topological order in traditional condensed matter systems and quantum simulation experimental platforms. It also provides prospects for the future developments of this field.
      Corresponding author: Li Jian-Xin, jxli@nju.edu.cn
    [1]

    Anderson P W 1972 Science 177 393Google Scholar

    [2]

    Lifshitz E M, Pitaevskii L P 1980 Statistical Physics Part 2: Theory of the Condensed State (New York: Pergamon Press) p1

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [4]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [5]

    Bednorz J G, Müler K A 1986 Z. Phys. B. 64 189Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [8]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [9]

    Wen X G 1990 Int. J. Mod. Phys. B 4 239Google Scholar

    [10]

    Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems (New York: Springer) p1

    [11]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin M D 2021 Science 374 1242Google Scholar

    [12]

    Satzinger K J, Liu Y J, Smith A, Knapp C, Newman M, Jones C, Chen Z, Quintana C, Mi X, Dunsworth A, Gidney C, Aleiner I, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Barends R, Basso J, Bengtsson A, Bilmes A, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Demura S, Derk A R, Eppens D, Erickson C, Faoro L, Farhi E, Fowler A G, Foxen B, Giustina M, Greene A, Gross J A, Harrigan M P, Harrington S D, Hilton J, Hong S, Huang T, Huggins W J, Ioffe L B, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Khattar T, Kim S, Klimov P V, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Locharla A, Lucero E, Martin O, McClean J R, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, O'Brien T E, Opremcak A, Pató B, Petukhov A, Rubin N C, Sank D, Shvarts V, Strain D, Szalay M, Villalonga B, White T C, Yao Z, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Kitaev A, Knap M, Pollmann F, Roushan P 2021 Science 374 1237Google Scholar

    [13]

    Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W, Xu X 2023 Nature 622 63Google Scholar

    [14]

    Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F, Shan J 2023 Nature 622 69Google Scholar

    [15]

    Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74Google Scholar

    [16]

    Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X, Li T 2023 Phys. Rev. X 13 031037Google Scholar

    [17]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [18]

    Wen J, Yu S L, Li S, Yu W, Li J X 2019 npj Quantum Mater. 4 1Google Scholar

    [19]

    Shimokawa T, Watanabe K, Kawamura H 2015 Phys. Rev. B 92 134407Google Scholar

    [20]

    Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S, Li J X, Wen J 2018 Phys. Rev. Lett. 120 087201Google Scholar

    [21]

    Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, Matsuda Y 2018 Nature 559 227Google Scholar

    [22]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [23]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [24]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [25]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [26]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804Google Scholar

    [27]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [28]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [29]

    Pan H, Wu F, Sarma S D 2020 Phys. Rev. Res. 2 033087Google Scholar

  • [1]

    Anderson P W 1972 Science 177 393Google Scholar

    [2]

    Lifshitz E M, Pitaevskii L P 1980 Statistical Physics Part 2: Theory of the Condensed State (New York: Pergamon Press) p1

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [4]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [5]

    Bednorz J G, Müler K A 1986 Z. Phys. B. 64 189Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [8]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [9]

    Wen X G 1990 Int. J. Mod. Phys. B 4 239Google Scholar

    [10]

    Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems (New York: Springer) p1

    [11]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin M D 2021 Science 374 1242Google Scholar

    [12]

    Satzinger K J, Liu Y J, Smith A, Knapp C, Newman M, Jones C, Chen Z, Quintana C, Mi X, Dunsworth A, Gidney C, Aleiner I, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Barends R, Basso J, Bengtsson A, Bilmes A, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Demura S, Derk A R, Eppens D, Erickson C, Faoro L, Farhi E, Fowler A G, Foxen B, Giustina M, Greene A, Gross J A, Harrigan M P, Harrington S D, Hilton J, Hong S, Huang T, Huggins W J, Ioffe L B, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Khattar T, Kim S, Klimov P V, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Locharla A, Lucero E, Martin O, McClean J R, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, O'Brien T E, Opremcak A, Pató B, Petukhov A, Rubin N C, Sank D, Shvarts V, Strain D, Szalay M, Villalonga B, White T C, Yao Z, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Kitaev A, Knap M, Pollmann F, Roushan P 2021 Science 374 1237Google Scholar

    [13]

    Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W, Xu X 2023 Nature 622 63Google Scholar

    [14]

    Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F, Shan J 2023 Nature 622 69Google Scholar

    [15]

    Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74Google Scholar

    [16]

    Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X, Li T 2023 Phys. Rev. X 13 031037Google Scholar

    [17]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [18]

    Wen J, Yu S L, Li S, Yu W, Li J X 2019 npj Quantum Mater. 4 1Google Scholar

    [19]

    Shimokawa T, Watanabe K, Kawamura H 2015 Phys. Rev. B 92 134407Google Scholar

    [20]

    Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S, Li J X, Wen J 2018 Phys. Rev. Lett. 120 087201Google Scholar

    [21]

    Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, Matsuda Y 2018 Nature 559 227Google Scholar

    [22]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [23]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [24]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [25]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [26]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804Google Scholar

    [27]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [28]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [29]

    Pan H, Wu F, Sarma S D 2020 Phys. Rev. Res. 2 033087Google Scholar

  • [1] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] Kun Yang. Geometric degrees of freedom and graviton-like excitations in fractional quantum Hall liquids. Acta Physica Sinica, 2024, 73(17): 177801. doi: 10.7498/aps.73.20240994
    [3] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum network communication resource optimization scheme based on multi-scale entanglement renormalization ansatz. Acta Physica Sinica, 2024, 73(23): 230301. doi: 10.7498/aps.73.20241382
    [4] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [5] Yang Shuai, Zhang Hao, He Ke. Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing. Acta Physica Sinica, 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [6] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [7] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [8] Shao Ya-Ting, Yan Kai, Wu Yin-Zhong, Hao Xiang. Dynamics of multipartite quantum coherence in asymmetric spin-orbit coupled system. Acta Physica Sinica, 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [9] Qiang Xiao-Bin, Lu Hai-Zhou. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [10] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [11] Quantum Transport in Topological Matters under Magnetic Fields. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200914
    [12] Ye Peng. Gauge theory of strongly-correlated symmetric topological Phases. Acta Physica Sinica, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [13] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [14] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [15] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [16] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [17] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [18] LEI XIAO-LIN. ELECTRICAL RESISTIVITY AND LONGE-RANGE ORDER IN Cu3Au. Acta Physica Sinica, 1982, 31(2): 262-267. doi: 10.7498/aps.31.262
    [19] . Acta Physica Sinica, 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
    [20] YEE SUN-SHENG, LIU YI-HUAN. THE ORDERING OF THE ALLOY AgAuZn2. Acta Physica Sinica, 1965, 21(4): 839-848. doi: 10.7498/aps.21.839
Metrics
  • Abstract views:  3059
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2024
  • Accepted Date:  12 March 2024
  • Available Online:  13 March 2024
  • Published Online:  05 April 2024

/

返回文章
返回