-
Cavity optomechanics, as a cross-discipline between nanophotonics and quantum mechanics, provides a unique platform for investigating optomechanical coupling between photons in microcavities and phonons from mechanical modes. It has a wide range of potential applications in quantum physics, and now it has become a hot topic. A theoretical scheme to enhance the sum sideband generation (SSG) via a two-level atom ensemble is proposed. The effect of the atomic ensemble’s detuning frequency on the efficiency of the SSG is considered by introducing a two-level atom medium. The results indicate that the efficiency of the generating sideband can be significantly enhanced under either red or blue detuning of the atoms, with greater dependence and more pronounced enhancement under the red detuning. In addition, we also consider the effect of pump power, which can effectively enhance the intensity of the output signal by selecting the appropriate pump power. More interestingly, the sensitivity of SSG to atomic detuning also indicates that the precise control of the atomic detuning frequency can achieve the fine-tuning of the SSG process. Furthermore, the cavity-atom coupling strength and atom decay rate are discussed for the transmission characteristics of the sum sideband signals. It is found that the efficiency of SSG can be effectively adjusted by the cavity-atom coupling strength and atom decay rate. The results show that the efficiency of SSG can be significantly improved by optimizing system parameters. The method of enhancing SSG may have potential application prospects in measuring high-precision weak forces and on-chip manipulation of light propagation.
-
Keywords:
- cavity optomechanics /
- two-level atom /
- optomechanical nonlinearity /
- sum sideband effects
-
图 2 (a)上和边带和(b)下和边带的效率(对数形式)作为原子失谐频率${\varDelta _1}$和失谐频率${\delta _1}$的函数, 其中${\delta _2} = $$ 0.05{\omega _{\text{m}}}$, 具体参数为$ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})= $$ 100\text{Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $ m=10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π})=2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)}=10\text{ MHz} $, ${P}_{1}={P}_{2}=0.5\text{ μW} $, ${P}_{\text{c}}=5\text{ mW} $, ${\lambda }_{\text{c}}=794.98\text{ nm} $
Figure 2. The efficiencies (in logarithmic form) of (a) upper sum sideband generation (USSG) and (b) lower sum sideband generation (LSSG) as a function of the atomic detuning frequency ${\varDelta _1}$ and the detuning frequency ${\delta _1}$, where ${\delta _2} = 0.05{\omega _{\text{m}}}$. The specific parameters are as follows: $ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})=100\text{ Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $m= $$ 10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π})=2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)}= $$ 10\text{ MHz} $, ${P}_{1}={P}_{2}=0.5\text{ μW} $, ${P}_{\text{c}}=5\text{ mW} $, $ {\lambda }_{\text{c}}=794.98 \text{ nm} $
图 3 ${\delta _2} = 0.05{\omega _{\text{m}}}$的USSG(上和边带)(a)和LSSG(下和边带)(b)的效率(对数形式)作为控制功率$ {p_{\text{c}}} $和失谐频率${\delta _1}$的函数, 其他参数与图2一致
Figure 3. The efficiencies (in logarithmic form) of (a) USSG and (b) LSSG as a function of the control field power $ {p_{\text{c}}} $ and the detuning frequency ${\delta _1}$ for ${\delta _2} = 0.05{\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.
图 4 在不同的原子失谐${\varDelta _1}$下, 输出场和边带的效率$\lg \eta _{\text{s}}^{{ \pm }}$与归一化失谐$ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $的函数关系, 其他参数同图2一致
Figure 4. The efficiency $\lg \eta _{\text{s}}^{{ \pm }}$ of the output field sum sideband as a function of the normalized detuning $ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $ for different atom detuning ${\varDelta _1}. $ The other parameters are the same as those in Fig. 2.
图 5 (a), (b)不同${g_{{\text{ac}}}}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $(品红色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $(蓝色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $(黑色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}} $(绿色实线), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, 其他参数与图2相同
Figure 5. (a) , (b)Plots the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${g_{{\text{ac}}}}$, where $ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $ (magenta line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $ (blue line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $ (black line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}} $ (green line), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.
图 6 (a), (b)不同${\gamma _a}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $(品红色实线), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $(绿色实线), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $(黑色实线), ${g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}}$, 其他参数与图2相同
Figure 6. (a), (b) Plots the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${\gamma _a}$, where $ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $ (magenta line), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $ (green line), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $ (black line), ${g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}}$, the other parameters are the same as those in Fig. 2
-
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
Google Scholar
[2] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp1–560
[3] Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29
[4] Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photonics 8 200
Google Scholar
[5] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2020 物理学报 64 164211
Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020 Acta Phys. Sin. 64 164211
[6] Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305
Google Scholar
[7] Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018 Commun. Phys. 1 43
Google Scholar
[8] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520
Google Scholar
[9] 贺庆 2019 博士学位论文 (武汉: 华中科技大学)
He Q 2019 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology
[10] Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817
Google Scholar
[11] Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060
Google Scholar
[12] Shen R C, Li J, Fan Z Y, Wang Y P , You J Q 2022 Phys. Rev. Lett. 129 123601
[13] Xu Y, Liu J Y, Liu W, Xiao Y F 2021 Phys. Rev. A 103 053501
Google Scholar
[14] 刘妮, 马硕, 梁九卿 2023 物理学报 72 060702
Google Scholar
Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702
Google Scholar
[15] Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev 10 nwac247
Google Scholar
[16] Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012 Phys. Rev. A 86 013815
Google Scholar
[17] Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014 Ann. Phys. 349 43
Google Scholar
[18] Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382
Google Scholar
[19] 罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203
Google Scholar
Luo J W, Wu W D, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203
Google Scholar
[20] Peng J X, Chen Z, Yuan Q Z, Feng X L 2019 Phys. Rev. A 99 043817
Google Scholar
[21] Han Y, Cheng J, Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
Google Scholar
[22] Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019 J. Phys. B: At. Mol. Opt. Phys. 52 105502
Google Scholar
[23] Han C M, Wang X, Chen H, Li H R 2020 Opt. Commun. 456 124605
Google Scholar
[24] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝 2019 物理学报 68 054201
Google Scholar
Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019 Acta Phys. Sin. 68 054201
Google Scholar
[25] 廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗 2016 中国激光 43 266
Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016 Chin. J. Lasers 43 266
[26] Asjad M, Saif F 2014 Optik 125 5455
Google Scholar
[27] Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018 Ann. Phys. 530 1800228
Google Scholar
[28] Chen S, Jing J 2010 Class. Quantum Grav. 27 225006
Google Scholar
[29] Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006 Phys. Rev. Lett. 97 087203
Google Scholar
[30] Michimura Y, Komori K 2020 Eur. Phys. J. D 74 126
Google Scholar
[31] Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
Google Scholar
[32] He Y 2016 Phys. Rev. A 94 063804
Google Scholar
[33] Yasir K A, Liu W M 2016 Sci. Rep. 6 22651
Google Scholar
[34] Akram M J, Ghafoor F, Khan M M, Saif F 2017 Phys. Rev. A 95 023810
Google Scholar
[35] Liu L W, Gengzang D J, An X J, Wang P Y 2018 Chin. Phys. B 27 034205
Google Scholar
[36] Cao C, Mi S C, Gao Y P, He L Y , Yang D , Wang T J , Zhang R, Wang C 2016 Sci. Rep. 6 22920
[37] Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820
Google Scholar
[38] Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021 Phys. Rev. A 104 033708
Google Scholar
[39] Nagy D, Szirmai G, Domokos P 2013 Eur. Phys. J. D 67 1
Google Scholar
[40] Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179
Google Scholar
[41] Li M, Chen C L 2014 Acta Phys. Sin. 63 043201
Google Scholar
[42] Su X, Huang Y M, Xiong H 2019 IEEE Access 7 133832
Google Scholar
[43] Xiong H, Si L G, Lü X Y, Wu Y 2016 Opt. Express 24 5773
Google Scholar
[44] Xiong H, Fan Y W, Yang X X, Wu Y 2016 Appl. Phys. Lett. 109 061108
Google Scholar
[45] Liu S, Liu B, Yang W X 2019 Opt. Express 27 3909
Google Scholar
[46] Wang X Y, Si L G, Lu X H, Wu Y 2019 Opt. Express 27 29297
Google Scholar
[47] Xiong H, Huang Y M, Wu Y 2021 Phys. Rev. A 103 043506
Google Scholar
[48] Lu X H, Si L G, Wang X Y, Wu Y 2021 Opt. Express 29 4875
Google Scholar
[49] Liao Q H, Ao J W, Song M L, Qiu H Y 2023 Opt. Express 31 27508
Google Scholar
[50] Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203 [王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬 2023 物理学报 72 094203]
Google Scholar
Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203
Google Scholar
[51] Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024 OPT LASER TECHNOL 168 109934
Google Scholar
[52] Singh S K, Peng J X, Asjad M, Mazaheri M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 215502
Google Scholar
[53] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810
Google Scholar
[54] Zeng R P, Zhang S, Wu C W, Wu W, Chen P X 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 2314
Google Scholar
[55] Breyer D, Bienert M 2012 Phys. Rev. A 86 053819
Google Scholar
Metrics
- Abstract views: 221
- PDF Downloads: 5
- Cited By: 0