Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sum sideband effect in hybrid optomechanical system with two-level atom ensemble

LIAO Qinghong TANG Zhian AO Jiawen

Citation:

Sum sideband effect in hybrid optomechanical system with two-level atom ensemble

LIAO Qinghong, TANG Zhian, AO Jiawen
cstr: 32037.14.aps.74.20241432
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Cavity optomechanics, as a cross-discipline between nanophotonics and quantum mechanics, provides a unique platform for investigating optomechanical coupling between photons in microcavities and phonons from mechanical modes. It has a wide range of potential applications in quantum physics, and now it has become a hot topic. A theoretical scheme to enhance the sum sideband generation (SSG) via a two-level atom ensemble is proposed. The effect of the atomic ensemble’s detuning frequency on the efficiency of the SSG is considered by introducing a two-level atom medium. The results indicate that the efficiency of the generating sideband can be significantly enhanced under either red or blue detuning of the atoms, with greater dependence and more pronounced enhancement under the red detuning. In addition, we also consider the effect of pump power, which can effectively enhance the intensity of the output signal by selecting the appropriate pump power. More interestingly, the sensitivity of SSG to atomic detuning also indicates that the precise control of the atomic detuning frequency can achieve the fine-tuning of the SSG process. Furthermore, the cavity-atom coupling strength and atom decay rate are discussed for the transmission characteristics of the sum sideband signals. It is found that the efficiency of SSG can be effectively adjusted by the cavity-atom coupling strength and atom decay rate. The results show that the efficiency of SSG can be significantly improved by optimizing system parameters. The method of enhancing SSG may have potential application prospects in measuring high-precision weak forces and on-chip manipulation of light propagation.
      Corresponding author: LIAO Qinghong, nculqh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62461035, 62061028), the Key Project of Natural Science Foundation of Jiangxi Province, China (Grant No. 20232ACB202003), the Finance Science and Technology Special “Contract System” Project of Nanchang University of Jiangxi Province, China (Grant No. ZBG20230418015), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2024NSCQ-MSX0412), and the Key Laboratory of Special Artificial Microstructure Materials and Technology Open Project Fund of Shanghai, China (Grant No. ammt2021A-4).
    [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp1–560

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29

    [4]

    Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photonics 8 200Google Scholar

    [5]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2020 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020 Acta Phys. Sin. 64 164211Google Scholar

    [6]

    Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305Google Scholar

    [7]

    Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018 Commun. Phys. 1 43Google Scholar

    [8]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [9]

    贺庆 2019 博士学位论文 (武汉: 华中科技大学)

    He Q 2019 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology

    [10]

    Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817Google Scholar

    [11]

    Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060Google Scholar

    [12]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [13]

    Xu Y, Liu J Y, Liu W, Xiao Y F 2021 Phys. Rev. A 103 053501Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev 10 nwac247Google Scholar

    [16]

    Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012 Phys. Rev. A 86 013815Google Scholar

    [17]

    Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014 Ann. Phys. 349 43Google Scholar

    [18]

    Xiong H, Si L G, Lü X Y, Wu Y 2016 Opt. Express 24 5773Google Scholar

    [19]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [20]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu W D, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [21]

    Peng J X, Chen Z, Yuan Q Z, Feng X L 2019 Phys. Rev. A 99 043817Google Scholar

    [22]

    Han Y, Cheng J, Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505Google Scholar

    [23]

    Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019 J. Phys. B: At. Mol. Opt. Phys. 52 105502Google Scholar

    [24]

    Han C M, Wang X, Chen H, Li H R 2020 Opt. Commun. 456 124605Google Scholar

    [25]

    谷开慧, 严冬, 张孟龙, 殷景志, 付长宝 2019 物理学报 68 054201Google Scholar

    Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019 Acta Phys. Sin. 68 054201Google Scholar

    [26]

    廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗 2016 中国激光 43 266Google Scholar

    Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016 Chin. J. Lasers 43 266Google Scholar

    [27]

    Asjad M, Saif F 2014 Optik 125 5455Google Scholar

    [28]

    Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018 Ann. Phys. 530 1800228Google Scholar

    [29]

    Chen S, Jing J 2010 Class. Quantum Grav. 27 225006Google Scholar

    [30]

    Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006 Phys. Rev. Lett. 97 087203Google Scholar

    [31]

    Michimura Y, Komori K 2020 Eur. Phys. J. D 74 126Google Scholar

    [32]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [33]

    He Y 2016 Phys. Rev. A 94 063804Google Scholar

    [34]

    Yasir K A, Liu W M 2016 Sci. Rep. 6 22651Google Scholar

    [35]

    Akram M J, Ghafoor F, Khan M M, Saif F 2017 Phys. Rev. A 95 023810Google Scholar

    [36]

    Liu L W, Gengzang D J, An X J, Wang P Y 2018 Chin. Phys. B 27 034205Google Scholar

    [37]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D , Wang T J , Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [38]

    Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820Google Scholar

    [39]

    Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021 Phys. Rev. A 104 033708Google Scholar

    [40]

    Nagy D, Szirmai G, Domokos P 2013 Eur. Phys. J. D 67 1Google Scholar

    [41]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179Google Scholar

    [42]

    Li M, Chen C L 2014 Acta Phys. Sin. 63 043201Google Scholar

    [43]

    Su X, Huang Y M, Xiong H 2019 IEEE Access 7 133832Google Scholar

    [44]

    Xiong H, Fan Y W, Yang X X, Wu Y 2016 Appl. Phys. Lett. 109 061108Google Scholar

    [45]

    Liu S, Liu B, Yang W X 2019 Opt. Express 27 3909Google Scholar

    [46]

    Wang X Y, Si L G, Lu X H, Wu Y 2019 Opt. Express 27 29297Google Scholar

    [47]

    Xiong H, Huang Y M, Wu Y 2021 Phys. Rev. A 103 043506Google Scholar

    [48]

    Lu X H, Si L G, Wang X Y, Wu Y 2021 Opt. Express 29 4875Google Scholar

    [49]

    Liao Q H, Ao J W, Song M L, Qiu H Y 2023 Opt. Express 31 27508Google Scholar

    [50]

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203 [王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬 2023 物理学报 72 094203]Google Scholar

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203Google Scholar

    [51]

    Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024 OPT LASER TECHNOL 168 109934Google Scholar

    [52]

    Singh S K, Peng J X, Asjad M, Mazaheri M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 215502Google Scholar

    [53]

    Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar

  • 图 1  含有两能级原子系综的复合光力系统模型图

    Figure 1.  Hybrid optomechanical system model diagram with a two-level atom ensemble.

    图 2  (a)上和边带和(b)下和边带的效率(对数形式)作为原子失谐频率${\varDelta _1}$和失谐频率${\delta _1}$的函数, 其中${\delta _2} = $$ 0.05{\omega _{\text{m}}}$, 具体参数为$ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})= $$ 100~\text{Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $ m=10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π}) $$ = 2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)} = 10\text{ MHz} $, ${P}_{1} = {P}_{2} = 0.5\text{ μW} $, ${P}_{\text{c}}= $$ 5\text{ mW} $, ${\lambda }_{\text{c}}=794.98\text{ nm} $

    Figure 2.  The efficiencies (in logarithmic form) of (a) upper sum sideband generation (USSG) and (b) lower sum sideband generation (LSSG) as a function of the atomic detuning frequency ${\varDelta _1}$ and the detuning frequency ${\delta _1}$, where ${\delta _2} = 0.05{\omega _{\text{m}}}$. The specific parameters are as follows: $ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})=100\text{ Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $m= $$ 10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π})=2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)}= $$ 10\text{ MHz} $, ${P}_{1}={P}_{2}=0.5\text{ μW} $, ${P}_{\text{c}}=5\text{ mW} $, $ {\lambda }_{\text{c}}=794.98 \text{ nm}$

    图 3  ${\delta _2} = 0.05{\omega _{\text{m}}}$的USSG (上和边带) (a)和LSSG (下和边带) (b)的效率(对数形式)作为控制功率$ {p_{\text{c}}} $和失谐频率${\delta _1}$的函数, 其他参数与图2一致

    Figure 3.  The efficiencies (in logarithmic form) of (a) USSG and (b) LSSG as a function of the control field power $ {p_{\text{c}}} $ and the detuning frequency ${\delta _1}$ for ${\delta _2} = 0.05{\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.

    图 4  在不同的原子失谐${\varDelta _1}$下, 输出场和边带的效率$\lg \eta _{\text{s}}^{{ \pm }}$与归一化失谐$ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $的函数关系, 其他参数同图2一致

    Figure 4.  The efficiency $\lg \eta _{\text{s}}^{{ \pm }}$ of the output field sum sideband as a function of the normalized detuning $ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $ for different atom detuning ${\varDelta _1}. $ The other parameters are the same as those in Fig. 2.

    图 5  (a), (b)不同${g_{{\text{ac}}}}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $(品红色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $(蓝色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $(黑色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}} $(绿色实线), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, 其他参数与图2相同

    Figure 5.  (a), (b) Plots of the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${g_{{\text{ac}}}}$, where $ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $ (magenta line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $ (blue line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $ (black line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}} $ (green line), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.

    图 6  (a), (b)不同${\gamma _a}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $(品红色实线), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $(绿色实线), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $(黑色实线), ${g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}}$, 其他参数与图2相同

    Figure 6.  (a), (b) Plots of the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${\gamma _a}$, where $ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $ (magenta line), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $ (green line), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $ (black line), ${g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}}$, the other parameters are the same as those in Fig. 2

  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp1–560

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29

    [4]

    Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photonics 8 200Google Scholar

    [5]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2020 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020 Acta Phys. Sin. 64 164211Google Scholar

    [6]

    Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305Google Scholar

    [7]

    Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018 Commun. Phys. 1 43Google Scholar

    [8]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [9]

    贺庆 2019 博士学位论文 (武汉: 华中科技大学)

    He Q 2019 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology

    [10]

    Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817Google Scholar

    [11]

    Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060Google Scholar

    [12]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [13]

    Xu Y, Liu J Y, Liu W, Xiao Y F 2021 Phys. Rev. A 103 053501Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev 10 nwac247Google Scholar

    [16]

    Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012 Phys. Rev. A 86 013815Google Scholar

    [17]

    Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014 Ann. Phys. 349 43Google Scholar

    [18]

    Xiong H, Si L G, Lü X Y, Wu Y 2016 Opt. Express 24 5773Google Scholar

    [19]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [20]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu W D, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [21]

    Peng J X, Chen Z, Yuan Q Z, Feng X L 2019 Phys. Rev. A 99 043817Google Scholar

    [22]

    Han Y, Cheng J, Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505Google Scholar

    [23]

    Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019 J. Phys. B: At. Mol. Opt. Phys. 52 105502Google Scholar

    [24]

    Han C M, Wang X, Chen H, Li H R 2020 Opt. Commun. 456 124605Google Scholar

    [25]

    谷开慧, 严冬, 张孟龙, 殷景志, 付长宝 2019 物理学报 68 054201Google Scholar

    Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019 Acta Phys. Sin. 68 054201Google Scholar

    [26]

    廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗 2016 中国激光 43 266Google Scholar

    Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016 Chin. J. Lasers 43 266Google Scholar

    [27]

    Asjad M, Saif F 2014 Optik 125 5455Google Scholar

    [28]

    Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018 Ann. Phys. 530 1800228Google Scholar

    [29]

    Chen S, Jing J 2010 Class. Quantum Grav. 27 225006Google Scholar

    [30]

    Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006 Phys. Rev. Lett. 97 087203Google Scholar

    [31]

    Michimura Y, Komori K 2020 Eur. Phys. J. D 74 126Google Scholar

    [32]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [33]

    He Y 2016 Phys. Rev. A 94 063804Google Scholar

    [34]

    Yasir K A, Liu W M 2016 Sci. Rep. 6 22651Google Scholar

    [35]

    Akram M J, Ghafoor F, Khan M M, Saif F 2017 Phys. Rev. A 95 023810Google Scholar

    [36]

    Liu L W, Gengzang D J, An X J, Wang P Y 2018 Chin. Phys. B 27 034205Google Scholar

    [37]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D , Wang T J , Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [38]

    Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820Google Scholar

    [39]

    Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021 Phys. Rev. A 104 033708Google Scholar

    [40]

    Nagy D, Szirmai G, Domokos P 2013 Eur. Phys. J. D 67 1Google Scholar

    [41]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179Google Scholar

    [42]

    Li M, Chen C L 2014 Acta Phys. Sin. 63 043201Google Scholar

    [43]

    Su X, Huang Y M, Xiong H 2019 IEEE Access 7 133832Google Scholar

    [44]

    Xiong H, Fan Y W, Yang X X, Wu Y 2016 Appl. Phys. Lett. 109 061108Google Scholar

    [45]

    Liu S, Liu B, Yang W X 2019 Opt. Express 27 3909Google Scholar

    [46]

    Wang X Y, Si L G, Lu X H, Wu Y 2019 Opt. Express 27 29297Google Scholar

    [47]

    Xiong H, Huang Y M, Wu Y 2021 Phys. Rev. A 103 043506Google Scholar

    [48]

    Lu X H, Si L G, Wang X Y, Wu Y 2021 Opt. Express 29 4875Google Scholar

    [49]

    Liao Q H, Ao J W, Song M L, Qiu H Y 2023 Opt. Express 31 27508Google Scholar

    [50]

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203 [王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬 2023 物理学报 72 094203]Google Scholar

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203Google Scholar

    [51]

    Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024 OPT LASER TECHNOL 168 109934Google Scholar

    [52]

    Singh S K, Peng J X, Asjad M, Mazaheri M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 215502Google Scholar

    [53]

    Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar

  • [1] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [2] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [3] Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature. Acta Physica Sinica, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [4] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [5] Zhang Xiu-Long, Bao Qian-Qian, Yang Ming-Zhu, Tian Xue-Song. Entanglement characteristics of output optical fields in double-cavity optomechanics. Acta Physica Sinica, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [6] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [7] Jia Shu-Fang, Liang Jiu-Qing. Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition. Acta Physica Sinica, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [8] Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [9] Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang. Nonlinear dynamic analysis of nano-resonator driven by optical gradient force. Acta Physica Sinica, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [10] Wang Wen-Rui, Yu Jin-Long, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Liu Yi, Yang En-Ze. All-optical logic gates based on nonlinear polarization rotation in high nonlinear fiber. Acta Physica Sinica, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [11] Yu Wen-Jian, Wang Ji-Suo, Liang Bao-Long. Quantum properties of two-level atoms interacting with nonlinear coherent states. Acta Physica Sinica, 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [12] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [13] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [14] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [15] FENG JIAN, WANG JI-SUO, GAO YUN-FENG, ZHAN MING-SHENG. INFLUENCE OF NONLINEARITIES OF BOTH THE FIELD AND THE INTENSITY-DEPENDENT ATOM-FIELD COUPLING ON THE EMISSION SPECTRUM OF AN ATOM IN A CAVITY. Acta Physica Sinica, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [16] FENG XUN-LI, HE LIN-SHENG. DETAILED BALANCE AND ENTROPY FOR A TWO-LEVEL ATOM IN A SQUEEZED VACUUM VIA DEGENERATE TWO PHOTON PROCESSES. Acta Physica Sinica, 1997, 46(10): 1926-1931. doi: 10.7498/aps.46.1926
    [17] FENG XUN-LI, HE LIN-SHENG, LIU YONG-LIANG. ANTIBUNCHING EFFECT OF TWO PHOTON FLUORESCENT LIGHT FOR A TWO LEVEL ATOM IN A SQUEEZED VACUUM. Acta Physica Sinica, 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
    [18] LIU ZHENG-DONG. NONLINEAR PROPERTIES OF FOUR-LEVER ATOM INTERACTING WITH TWO-MODE CAVITY FIELDS. Acta Physica Sinica, 1989, 38(1): 98-104. doi: 10.7498/aps.38.98
    [19] DU GONG-HUAN. NONLINEAR THEORY OF PHOTOACOUSTIC EFFECT OF RESTRICTED BEAM. Acta Physica Sinica, 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
    [20] LUO SHI-YU, LIU ZHENG-RONG, SHAO MING-ZHU. ON THE NONLINEAR PROPERTIES OF THE PHOTO-MAGNETOELECTRIC EFFECT IN SEMICONDUCTORS. Acta Physica Sinica, 1987, 36(5): 547-554. doi: 10.7498/aps.36.547
Metrics
  • Abstract views:  393
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2024
  • Accepted Date:  11 January 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回