Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum measurement with cavity optomechanical systems

Chen Xue Liu Xiao-Wei Zhang Ke-Ye Yuan Chun-Hua Zhang Wei-Ping

Citation:

Quantum measurement with cavity optomechanical systems

Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cavity optomechanics originated from the research of interferometric detection of gravitational waves, and later became a fast-growing area of techniques and approaches ranging from the fields of atomic, molecular, and optical physics to nano-science and condensed matter physics as well. Recently, it focused on the exploration of operating mechanical oscillators deep in the quantum regime, with an interest ranging from quantum-classical interface tests to high-precision quantum metrology. In this paper, recent theoretical work of our group in the field of quantum measurement with cavity optomechanical systems is reviewed. We explore the quantum measurement theory and its applications with several unconventional cavity optomechanical schemes working in the quantum regime. This review covers the basics of quantum noises in the cavity optomechanical setups and the resulting standard quantum limit of precision displacement and force measurement. Three novel quantum measurement proposals based on the hybrid optomechanical system are introduced. First, we describe a quantum back-action insulated weak force sensor. It is realized by forming a quantum-mechanics-free subsystem with two optomechanical oscillators of reversed effective mass. Then we introduce a role-reversed atomic optomechanical system which enables the preparation and the quantum tomography of a variety of non-classical states of atoms. In this system, the cavity field acts as a mechanical oscillator driven by the radiation pressure force from an ultracold atomic field. In the end, we recommend a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical frequency domain. These proposals demonstrate the possible applications of optomechanical devices in understanding of quantum-classical crossover and in achieving quantum measurement limit.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921604), the National Natural Science Foundation of China (Grant Nos. 11204084, 11234003, 11129402, 11474095, 91436211), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076120003), the Shanghai Foundation for Development of Science and Technology, China (Grant No. 12ZR1443400), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Yuan C H, Zhang K Y, Zhang W P 2014 Sci. China Inform. Sci. 44 345 (in Chinese) [袁春华, 张可烨, 张卫平 2014 中国科学:信息科学 44 345]

    [2]

    Braginsky V B, Vorontsov Y L, Thorne K S 1980 Science 209 547

    [3]

    Caves C M, et al. 1980 Rev. Mod. Phys. 52 341

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [5]

    Marquardt F, Girvin S M 2009 Physics 2 40

    [6]

    Meystre P 2013 Ann. Phys. 525 215

    [7]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [8]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801

    [9]

    Murch K W, Moore K L, Gupta S, Stamper-Kurn D M 2008 Nat. Phys. 4 561

    [10]

    Caves C M 1981 Phys. Rev. D 23 1693

    [11]

    Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P, Andersen U L 2013 Opt. Lett. 38 1413

    [12]

    Aasi J, et al. 2013 Nat. Photon. 7 613

    [13]

    Mancini S, Vitali D, Tombesi P 1998 Phys. Rev. Lett. 80 688

    [14]

    Zhang W P, et al. 2014 Advances in Quantum Optics (Shanghai: Shanghai Jiao Tong University Press) p132 (in Chinese) [张卫平 等 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第132页]

    [15]

    Braginsky V B, Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)

    [16]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [17]

    Milburn G J, Woolley M J

    [18]

    Schliesser A, Arcizet O, Riviere R, Kippenberg T J 2009 Nat. Phys. 5 509

    [19]

    Tsang M, Caves C M

    [20]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [21]

    Clerk A A, Marquardt F, Jacobs K 2008 New J. Phys. 10 95010

    [22]

    Fink J M, Steffen L, Studer P, et al. 2010 Phys. Rev. Lett. 105 163601

    [23]

    Hammerer K, Aspelmeyer M, Polzik E S, Zoller P 2009 Phys. Rev. Lett. 102 020501

    [24]

    Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, Wineland D J 1996 Phys. Rev. Lett. 77 4281

    [25]

    Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M, Haroche S 2008 Nature 455 510

    [26]

    Zhang K Y, Meystre P, Zhang W P 2012 Phys. Rev. Lett. 108 240405

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235

    [28]

    Mancini S, Ma'nko V I, Tombesi P 1997 Phys. Rev. A 55 3042

    [29]

    Bose S, Jacobs K, Knight P L 1997 Phys. Rev. A 56 4175

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H 2000 Nature 403 405

    [32]

    Houck A A, Schuster D I, Gambetta J M, et al. 2007 Nature 449 328

    [33]

    Guerlin C, Bernu J, Deleglise S, et al. 2007 Nature 448 889

    [34]

    Bozyigit D, Lang C, Steffen L, et al. 2011 Nat. Phys. 7 154

    [35]

    Chunnilall C J, Degiovanni I P, Kück S, Müller I, Sinclair A G 2014 Opt. Eng. 53 081910

    [36]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [37]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [38]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [39]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

    [40]

    Zhang K Y, Bariani F, Dong Y, Zhang W P, Meystre P 2015 Phys. Rev. Lett. 114 113601

    [41]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [42]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

  • [1]

    Yuan C H, Zhang K Y, Zhang W P 2014 Sci. China Inform. Sci. 44 345 (in Chinese) [袁春华, 张可烨, 张卫平 2014 中国科学:信息科学 44 345]

    [2]

    Braginsky V B, Vorontsov Y L, Thorne K S 1980 Science 209 547

    [3]

    Caves C M, et al. 1980 Rev. Mod. Phys. 52 341

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [5]

    Marquardt F, Girvin S M 2009 Physics 2 40

    [6]

    Meystre P 2013 Ann. Phys. 525 215

    [7]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [8]

    Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801

    [9]

    Murch K W, Moore K L, Gupta S, Stamper-Kurn D M 2008 Nat. Phys. 4 561

    [10]

    Caves C M 1981 Phys. Rev. D 23 1693

    [11]

    Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P, Andersen U L 2013 Opt. Lett. 38 1413

    [12]

    Aasi J, et al. 2013 Nat. Photon. 7 613

    [13]

    Mancini S, Vitali D, Tombesi P 1998 Phys. Rev. Lett. 80 688

    [14]

    Zhang W P, et al. 2014 Advances in Quantum Optics (Shanghai: Shanghai Jiao Tong University Press) p132 (in Chinese) [张卫平 等 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第132页]

    [15]

    Braginsky V B, Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)

    [16]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [17]

    Milburn G J, Woolley M J

    [18]

    Schliesser A, Arcizet O, Riviere R, Kippenberg T J 2009 Nat. Phys. 5 509

    [19]

    Tsang M, Caves C M

    [20]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [21]

    Clerk A A, Marquardt F, Jacobs K 2008 New J. Phys. 10 95010

    [22]

    Fink J M, Steffen L, Studer P, et al. 2010 Phys. Rev. Lett. 105 163601

    [23]

    Hammerer K, Aspelmeyer M, Polzik E S, Zoller P 2009 Phys. Rev. Lett. 102 020501

    [24]

    Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, Wineland D J 1996 Phys. Rev. Lett. 77 4281

    [25]

    Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M, Haroche S 2008 Nature 455 510

    [26]

    Zhang K Y, Meystre P, Zhang W P 2012 Phys. Rev. Lett. 108 240405

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235

    [28]

    Mancini S, Ma'nko V I, Tombesi P 1997 Phys. Rev. A 55 3042

    [29]

    Bose S, Jacobs K, Knight P L 1997 Phys. Rev. A 56 4175

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H 2000 Nature 403 405

    [32]

    Houck A A, Schuster D I, Gambetta J M, et al. 2007 Nature 449 328

    [33]

    Guerlin C, Bernu J, Deleglise S, et al. 2007 Nature 448 889

    [34]

    Bozyigit D, Lang C, Steffen L, et al. 2011 Nat. Phys. 7 154

    [35]

    Chunnilall C J, Degiovanni I P, Kück S, Müller I, Sinclair A G 2014 Opt. Eng. 53 081910

    [36]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [37]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [38]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [39]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

    [40]

    Zhang K Y, Bariani F, Dong Y, Zhang W P, Meystre P 2015 Phys. Rev. Lett. 114 113601

    [41]

    Andrews R W, Peterson R W, Purdy T P, et al. 2014 Nat. Phys. 10 321

    [42]

    Bochmann J, Vainsencher A, Awschalom D D, Cleland A N 2013 Nat. Phys. 9 712

  • [1] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [2] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [3] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [4] Shang Xiang-Jun, Li Shu-Lun, Ma Ben, Chen Yao, He Xiao-Wu, Ni Hai-Qiao, Niu Zhi-Chuan. Optical fiber coupling of quantum dot single photon sources. Acta Physica Sinica, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [5] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [6] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [7] Miao Qiang, Li Xiang, Wu De-Wei, Luo Jun-Wen, Wei Tian-Li, Zhu Hao-Nan. Preparation methods and progress of experiments of quantum microwave. Acta Physica Sinica, 2019, 68(7): 070302. doi: 10.7498/aps.68.20191981
    [8] Zhang Xiu-Long, Bao Qian-Qian, Yang Ming-Zhu, Tian Xue-Song. Entanglement characteristics of output optical fields in double-cavity optomechanics. Acta Physica Sinica, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [9] Shi Yong-Qiang, Kong Wei-Long, Wu Ren-Cun, Zhang Wen-Xuan, Tan Lei. Single photon transport by a quantized cavity field driven cascade-type three-level atom in a dissipative coupled cavity array. Acta Physica Sinica, 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [10] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [11] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [12] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [13] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [14] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Single-photon interference based on a single InAs quantum dot. Acta Physica Sinica, 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [15] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Correlation measurement of quantum cascade photons in single InAs quantum dot. Acta Physica Sinica, 2011, 60(1): 017804. doi: 10.7498/aps.60.017804
    [16] Jiao Rong-Zhen, Feng Chen-Xu, Ma Hai-Qiang. Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detector. Acta Physica Sinica, 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [17] Hu Xue-Ning, Li Xin-Qi. Quantum measurement of single electron state by a quantum point contact. Acta Physica Sinica, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [18] Dai Tao, Liu Yu-Zi, Zhang Ze. Electron holography determination of the growth polarity of GaN/AlGaN multi-quantum well structure. Acta Physica Sinica, 2006, 55(11): 5829-5834. doi: 10.7498/aps.55.5829
    [19] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. The effects of quantum measurement on an excited Λ-type atom in three-dimensional photonic crystal. Acta Physica Sinica, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [20] Peng Shuang-Yan, Huang Tao, Wang Xiao-Bo, Shao Jun-Hu, Xiao Liao-Tuan, Jia Suo-Tang. Identifying single molecule based on the photon statistics. Acta Physica Sinica, 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
Metrics
  • Abstract views:  11149
  • PDF Downloads:  912
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2015
  • Accepted Date:  30 July 2015
  • Published Online:  05 August 2015

/

返回文章
返回