Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation methods and progress of experiments of quantum microwave

Miao Qiang Li Xiang Wu De-Wei Luo Jun-Wen Wei Tian-Li Zhu Hao-Nan

Citation:

Preparation methods and progress of experiments of quantum microwave

Miao Qiang, Li Xiang, Wu De-Wei, Luo Jun-Wen, Wei Tian-Li, Zhu Hao-Nan
PDF
HTML
Get Citation
  • Based on the characteristics of superposition, entanglement, non-locality and non-clonality of quantum mechanics, quantum information science can break through the physical limits of classical information and open up a new information processing function different from classical electromagnetic application methods. Due to the advantages of high-energy single photon in practical applications, the research and application of optical quantum information technology dominates the development of current quantum information technology. However, the free-space transmission of light waves is greatly affected by weather conditions and atmospheric particles. Comparing with other wave bands, classical microwave signal shows good penetration ability when transmitting in free space. By introducing quantum mechanics, microwave signal also exhibits non-classical merits. As quantum microwave signal inherits both classical transmission performance and quantum non-classical features, it can be utilized as a significant signal source for diverse applications in microwave domain, such as quantum communication, quantum navigation and quantum radar, which are based on quantum technologies in large scale and dynamic free space transmission. There are three main experimental platforms on which quantum microwave is studied and produced. They are cavity quantum electrodynamics(C-QED) system, circuit quantum electrodynamics(c-QED) system, and cavity electro-opto-mechanical(EOM) system, involving with several nonlinear effects such as Kerr effect, Casimir effect, three-wave mixing, etc. In this paper, the setups of these platforms and the preparation principles are introduced. Meanwhile, the preparation principles and methods of microwave single photon, entangled microwave photons, squeezed microwave fields and entangled microwave fields are summarized and analyzed in detail from three aspects. The present status of experimental progress in the relevant fields are summarized and listed as well. Besides, key problems in the application of quantum navigation in free space utilizing quantum microwave are probed. Among them, the most pressing ones are preparation ability, decoherence in transmission and detection of entangled quantum microwave signals, which are also discussed and analyzed in this paper. Finally, we look forward to the future development of quantum microwave technology. It mainly consists of manufacturing microwave detectors with high efficiency, designing thermal photon filters, and developing suitable antennas. We hope that this study can provide useful reference for scholars who are engaged in or interested in research related to quantum microwave technologies.
      Corresponding author: Miao Qiang, mqmiaoqiang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61603413, 61573372), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6017), and the Principal Foundation of Air Force Engineering University, China (Grant No. XZJK2018019).
    [1]

    周正威, 陈巍, 孙方稳, 项国勇, 李传锋 2012 科学通报 57 1498

    Zhou Z W, Chen W, Sun F W, Xiang G Y, Li C F 2012 Chin. Sci. Bull. 57 1498

    [2]

    吴华, 王向斌, 潘建伟 2014 中国科学: 信息科学 44 296

    Wu H, Wang X B, Pan J W 2014 Scientia Sinica Informationis 44 296

    [3]

    Thomas B 2008 USA Patent 7359064

    [4]

    Lanzagorta M 2011 Quantum Radar 1st edition (London: Morgan & Claypool Publishers) pp1-139

    [5]

    Walther H, Varcoe B T H, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [6]

    杨榕灿 2012 博士学位论文 (太原: 山西大学)

    Yang R C 2012 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [7]

    Joshi A, Min X 2017 Opt. Commun. 393 284Google Scholar

    [8]

    Bishop L S 2010 Ph. D. Dissertation (New Haven: Yale University)

    [9]

    Hu J, Ke Q 2016 Optik (Munich, Ger.) 127 3950

    [10]

    Ghosh J, Sanders B C 2016 New J. Phys. 18 033015Google Scholar

    [11]

    Mi X, Cady J V, Zajac D M 2017 Appl. Phys. Lett. 110 3502

    [12]

    张玉娜 2014 博士学位论文 (合肥: 中国科学技术大学)

    Zhang Y N 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    刘宇浩 2016 博士学位论文 (南京: 南京大学)

    Liu Y H 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [14]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211

    [15]

    Zheng Q, Xu J W, Yao Y, Yong L 2016 Phys. Rev. A 94 052314Google Scholar

    [16]

    LaHaye M D, Rouxinol F, Hao Y, Shim S B, Irish E K Quantum Information and Computation XIII, the United States April 20, 2015 p1

    [17]

    蒲涛, 闻传花, 项鹏 2015 微波光子学原理与应用 (北京:电子工业出版社) 第1−5页

    Pu T, Wen C H, Xiang P 2015 Principles and Application of Microwave Photonics (Beijing: Electronic Industry Press) pp1−5 (in Chinese)

    [18]

    段一士 2015 量子场论 (北京: 高等教育出版社) 第88—90页

    Duan Y S Quantum Field Theory (Beijing: High Education Press) pp88—90 (in Chinese)

    [19]

    Guo G C, Zhang H, Wang Q 2017 J. Nanjing Univ. Posts Tele. (Natural Sci. Ed.) 37 1

    [20]

    苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101

    Su X L, Jia X J, Peng K C 2016 Prog. Phys. 36 101

    [21]

    张革 2015 博士学位论文 (北京: 北京交通大学)

    Zhang G 2015 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [22]

    Yamamoto N Y 2013 IEEE Photonics J. 5 0701406Google Scholar

    [23]

    Meschede D, Walther H, Muller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [24]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129Google Scholar

    [25]

    Koroli V I, Ciorba V G 2006 Moldavian J. Phys. Sci. 5 214

    [26]

    Kuhn A, Ljunggren D 2010 Contemp. Phys. 51 289Google Scholar

    [27]

    张智明 2004 量子电子学报 21 224Google Scholar

    Zhang Z M 2004 Chin. J. Quantum Electron. 21 224Google Scholar

    [28]

    Zhang Z M 2006 Acta Sin. Quantum Opt. 12 194

    [29]

    Jones M L, Wilkes G J, Varcoe B T H 2009 J. Phys. B 42 5501

    [30]

    Pechal M 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [31]

    Gu X, Kockum A F, Miranowicz A, Liu X Y, Nori F 2017 Phys. Rep. 718 1

    [32]

    Wang X, Miranowicz A, Li H R 2016 Phys. Rev. A 94 053858Google Scholar

    [33]

    Manninen A J, Kemppinen A, Enrico E 2014 29th Conference on Precision Electromagnetic Measurements (CPEM 2014) Rio de Janeiro Brazil, August 24, 2014 p324

    [34]

    Sathyamoorthy S R, Thomas M S, Goran J 2016 C. R. Phys. 17 756Google Scholar

    [35]

    Bozyigit D, Lang C, Steffen L, Fink J M, Eichler C, Baur M, Bianchetti R, Leek P J, Filipp S, Silva M P, Blais A, Wallraff A 2011 Nat. Phys. 7 154Google Scholar

    [36]

    Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar

    [37]

    Peng Z H, Graaf S E, Tsai J S, Astafiev O V 2016 Nat. Commun. 7 12588Google Scholar

    [38]

    Yin Y, Chen Y, Sank D, O’Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 110 107001Google Scholar

    [39]

    Koshino K, Inomata K, Lin Z, Nakamura Y, Yamamoto T 2015 Phys. Rev. A 91 043805Google Scholar

    [40]

    Inomata K, Lin Z R, Koshino K, Oliver W D 2016 Nat. Commun. 7 12303Google Scholar

    [41]

    郭伟杰 2016 博士学位论文 (成都: 西南交通大学)

    Guo W J 2016 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [42]

    Stace T M, Milburn G J, Barnes C H W 2001 Phys. Rev. B 67 085317

    [43]

    Johne R, Gippius N A 2009 Phys. Rev. B: Condens. Matter Mater. Phys. 79 155317Google Scholar

    [44]

    Predojevic A, Huber T, Jezek M, Jayakumar H 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference Munich, May 16, 2013 p6801613

    [45]

    Emary C, Trauzettel B 2005 Phys. Rev. Lett. 95 127401Google Scholar

    [46]

    Shi L K, Chang K, Sun C P 2016 APS March Meeting 2016 Baltimore, Maryland, March 14-18, pG1.00283

    [47]

    Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson R, Duty T L, Nori F, Delsing P 2011 Nature 479 376Google Scholar

    [48]

    Johansson J R, Johansson G, Wilson C M 2010 Phys. Rev. A 82 052509Google Scholar

    [49]

    Johansson J R, Johansson G, Wilson C M, Delsing P, Nori F 2010 Phys. Rev. A 87 043804

    [50]

    Lang C, Eichler C, Steffen L, Fink J M, Woolley M J, Blais A, Wallraff A 2013 Nat. Phys. 9 345Google Scholar

    [51]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027Google Scholar

    [52]

    Yang C P, Su Q P, Zheng S B, Han S Y 2013 Phys. Rev. A 87 022320Google Scholar

    [53]

    Eichler C, Lang C, Fink J M, Govenius J, Filipp S, Wallraff A 2014 Phys. Rev. Lett. 109 240501

    [54]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2014 Phys. Rev. Lett. 114 090503

    [55]

    Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T, Deng F G 2017 arXiv:1709.00120v2 [quant-ph]

    [56]

    Regal C A, Lehnert K W, 2011 J. Phys.: Conf. Ser. 264 012025Google Scholar

    [57]

    刘艳 2016 硕士学位论文 (武汉: 华中师范大学)

    Liu Y 2016 M. S. Dissertation (Wuhan: Central China Normal University) (in Chinese)

    [58]

    谷文举 2014 博士学位论文 (武汉: 华中师范大学)

    Gu W J 2014 Ph. D. Dissertation (Wuhan: Central China Normal University) (in Chinese)

    [59]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [60]

    Tian L 2015 Ann. Phys. 527 1

    [61]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [62]

    Barzanjeh S, de Oliveira M C, Pirandola S 2014 arXiv:1410.4024v1 [quant-ph]

    [63]

    李响, 吴德伟, 苗强, 朱浩男, 魏天丽 2018 物理学报 67 240301Google Scholar

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 Acta Phys. Sin. 67 240301Google Scholar

    [64]

    Wolfgramm F, Cere A, Beduini F A, Predojevi'c A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [65]

    Tang B, Zhang B C, Zhou L, Wang J, Zhan M S 2015 Res. Astron. Astrophys. 15 333Google Scholar

    [66]

    Pielawa S, Morigi G, Vitali D, Davidovich L 2007 Phys. Rev. Lett. 98 240401Google Scholar

    [67]

    Li P B, Li F L 2010 Phys. Rev. A 81 035802Google Scholar

    [68]

    李蓬勃, 李福利 2010 第十四届全国量子光学学术会议 山东曲阜, 2010年8月5−8日, 第36页

    Li P B, Li F L 2010 The 14th National Conference on Quantum Optics Qufu, Shandong, August 5−8, 2010 p36 (in Chinese)

    [69]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510Google Scholar

    [70]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013Google Scholar

    [71]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502Google Scholar

    [72]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P, Wild G, Huebl H, Mariantoni M, Weißl T, Lukashenko A, Zhuravel A P, Ustinov A V, Marx A, Gross R 2010 Appl. Phys. Lett. 97 222508Google Scholar

    [73]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601Google Scholar

    [74]

    Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar

    [75]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296Google Scholar

    [76]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64Google Scholar

    [77]

    Roch N, Flurin E, Nguyen F, Morfin P, Campagne-Ibarcq P, Devoret M H, Huard B 2012 Phys. Rev. Lett. 108 147701Google Scholar

    [78]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901Google Scholar

    [79]

    Alessandro F, Francesco C, Rosario F 2014 Phys. Rev. A 89 022335Google Scholar

    [80]

    Yousif T, Zhou W J, Zhou L 2016 Int. J. Theor. Phys. 55 901Google Scholar

    [81]

    Caspar O K, Erno D, Juha-Matti P, Tero H, Francesco M, Mika S 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [82]

    Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 043802Google Scholar

    [83]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [84]

    Aggarwal N, Debnath K, Mahajan S, Bhattacherjee A B, Mohan M 2014 Int. J. Quantum Inf. 12 1450024Google Scholar

    [85]

    Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar

    [86]

    Palomaki T A, Harlow J W, Teufel J D, Simmonds R W, Lehnert K W 2013 Nature 495 210Google Scholar

    [87]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601Google Scholar

    [88]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys. 527 139Google Scholar

    [89]

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 IEEE Photonics J. 10 6101107

    [90]

    Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018 AIP Adv. 8 065217Google Scholar

    [91]

    Li X, Wu D W, Zhu H N, Miao Q, Wei T L 2018 Results Phys. 11 920Google Scholar

  • 图 1  (a) 腔–光–力学系统结构示意图; (b) 腔–电–力学系统结构示意图

    Figure 1.  (a) Schematics of the cavity optomechanical system; (b) schematics of the cavity electromechanics system.

    图 2  腔量子电动力学系统

    Figure 2.  Cavity quantum electrodynamics system.

    图 3  微波单光子产生设备[35], 左侧内插图为超导量子比特 a: 超导传输线谐振腔; c: 输出电容; d: 热噪声端口; e/f: 相干测量端口; Z0Z1为匹配阻抗

    Figure 3.  The experimental set-up of generating microwave single-photon, where the left inset denotes qubit. a: superconducting transmission line resonator; c: output capacitance; d: thermal noise port; e/f: coherent measurement port; Z0 and Z1 are matching impedance.

    图 4  频率可调微波单光子源原理与结构[37]

    Figure 4.  Principle and structure of frequency-adjustable microwave single-photon source.

    图 5  利用量子点产生纠缠微波光子对的原理[45]

    Figure 5.  Principle of generating entangled microwave photon pair using quantum dots.

    图 6  Wilson小组实验装置及超导量子干涉仪电子扫描照片[48]

    Figure 6.  The scanning-electron micrograph of the experimental device and SQUID of Wilson group[48].

    图 7  约瑟夫森–光子装置等效电路原理图[51]

    Figure 7.  Sketch of an equivalent circuit principle of Josephson-photonics device.

    图 8  电–光–力学系统典型结构

    Figure 8.  The typical structure of electro-opto-mechanical system.

    图 9  微波量子照射雷达示意图[61]

    Figure 9.  Schematic of microwave quantum illumination.

    图 10  利用量子库产生双模压缩态方案[66]

    Figure 10.  Scheme of generating two-mode squeezed state using quantum reservoir.

    图 11  基于超冷原子与超导传输线腔耦合产生双模压缩态方案[67]

    Figure 11.  Scheme of generating two-mode squeezed state based on the coupling of ultracold atoms and superconducting transmission line resonator.

    图 12  (a) 约瑟夫森参量放大器[71]; (b) 180°混合环微波分束器[72]

    Figure 12.  (a) Josephson parametric amplifier; (b) 180° hybrid ring microwave beam splitter.

    图 13  四波混频产生压缩微波场[73]

    Figure 13.  Schematic of generating squeezed microwave field using four-wave mixing.

    图 14  压缩场与真空场耦合产生纠缠微波场[74]

    Figure 14.  Schematic of generating entangled microwave field using the squeezed field and vacuum field.

    图 15  约瑟夫森混频器产生双模压缩微波场[78]

    Figure 15.  Schematic of generating two-mode squeezed microwave field using Josephson mixer.

    图 16  基于腔–电–力学系统的微波参量放大装置[81]

    Figure 16.  The microwave parametric amplifier device based on cavity electromechanics system.

    图 17  基于腔–电–力学系统的双模压缩微波场产生装置[82]

    Figure 17.  Device of generating two-mode squeezed microwave field based on cavity electromechanics system.

    图 18  超导电路量子电动力学与腔–电–力学的联合系统制备压缩微波场[83]

    Figure 18.  The jointed system of circuit quantum electrodynamics and cavity electromechanics system that generating squeezed microwave field.

    图 19  连续变量纠缠微波场的电–光–力学产生方案[88]

    Figure 19.  Scheme of electro-opto-mechanical system to generate continuous variable entangled microwave field.

  • [1]

    周正威, 陈巍, 孙方稳, 项国勇, 李传锋 2012 科学通报 57 1498

    Zhou Z W, Chen W, Sun F W, Xiang G Y, Li C F 2012 Chin. Sci. Bull. 57 1498

    [2]

    吴华, 王向斌, 潘建伟 2014 中国科学: 信息科学 44 296

    Wu H, Wang X B, Pan J W 2014 Scientia Sinica Informationis 44 296

    [3]

    Thomas B 2008 USA Patent 7359064

    [4]

    Lanzagorta M 2011 Quantum Radar 1st edition (London: Morgan & Claypool Publishers) pp1-139

    [5]

    Walther H, Varcoe B T H, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [6]

    杨榕灿 2012 博士学位论文 (太原: 山西大学)

    Yang R C 2012 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [7]

    Joshi A, Min X 2017 Opt. Commun. 393 284Google Scholar

    [8]

    Bishop L S 2010 Ph. D. Dissertation (New Haven: Yale University)

    [9]

    Hu J, Ke Q 2016 Optik (Munich, Ger.) 127 3950

    [10]

    Ghosh J, Sanders B C 2016 New J. Phys. 18 033015Google Scholar

    [11]

    Mi X, Cady J V, Zajac D M 2017 Appl. Phys. Lett. 110 3502

    [12]

    张玉娜 2014 博士学位论文 (合肥: 中国科学技术大学)

    Zhang Y N 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    刘宇浩 2016 博士学位论文 (南京: 南京大学)

    Liu Y H 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [14]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211

    [15]

    Zheng Q, Xu J W, Yao Y, Yong L 2016 Phys. Rev. A 94 052314Google Scholar

    [16]

    LaHaye M D, Rouxinol F, Hao Y, Shim S B, Irish E K Quantum Information and Computation XIII, the United States April 20, 2015 p1

    [17]

    蒲涛, 闻传花, 项鹏 2015 微波光子学原理与应用 (北京:电子工业出版社) 第1−5页

    Pu T, Wen C H, Xiang P 2015 Principles and Application of Microwave Photonics (Beijing: Electronic Industry Press) pp1−5 (in Chinese)

    [18]

    段一士 2015 量子场论 (北京: 高等教育出版社) 第88—90页

    Duan Y S Quantum Field Theory (Beijing: High Education Press) pp88—90 (in Chinese)

    [19]

    Guo G C, Zhang H, Wang Q 2017 J. Nanjing Univ. Posts Tele. (Natural Sci. Ed.) 37 1

    [20]

    苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101

    Su X L, Jia X J, Peng K C 2016 Prog. Phys. 36 101

    [21]

    张革 2015 博士学位论文 (北京: 北京交通大学)

    Zhang G 2015 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [22]

    Yamamoto N Y 2013 IEEE Photonics J. 5 0701406Google Scholar

    [23]

    Meschede D, Walther H, Muller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [24]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129Google Scholar

    [25]

    Koroli V I, Ciorba V G 2006 Moldavian J. Phys. Sci. 5 214

    [26]

    Kuhn A, Ljunggren D 2010 Contemp. Phys. 51 289Google Scholar

    [27]

    张智明 2004 量子电子学报 21 224Google Scholar

    Zhang Z M 2004 Chin. J. Quantum Electron. 21 224Google Scholar

    [28]

    Zhang Z M 2006 Acta Sin. Quantum Opt. 12 194

    [29]

    Jones M L, Wilkes G J, Varcoe B T H 2009 J. Phys. B 42 5501

    [30]

    Pechal M 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [31]

    Gu X, Kockum A F, Miranowicz A, Liu X Y, Nori F 2017 Phys. Rep. 718 1

    [32]

    Wang X, Miranowicz A, Li H R 2016 Phys. Rev. A 94 053858Google Scholar

    [33]

    Manninen A J, Kemppinen A, Enrico E 2014 29th Conference on Precision Electromagnetic Measurements (CPEM 2014) Rio de Janeiro Brazil, August 24, 2014 p324

    [34]

    Sathyamoorthy S R, Thomas M S, Goran J 2016 C. R. Phys. 17 756Google Scholar

    [35]

    Bozyigit D, Lang C, Steffen L, Fink J M, Eichler C, Baur M, Bianchetti R, Leek P J, Filipp S, Silva M P, Blais A, Wallraff A 2011 Nat. Phys. 7 154Google Scholar

    [36]

    Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar

    [37]

    Peng Z H, Graaf S E, Tsai J S, Astafiev O V 2016 Nat. Commun. 7 12588Google Scholar

    [38]

    Yin Y, Chen Y, Sank D, O’Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 110 107001Google Scholar

    [39]

    Koshino K, Inomata K, Lin Z, Nakamura Y, Yamamoto T 2015 Phys. Rev. A 91 043805Google Scholar

    [40]

    Inomata K, Lin Z R, Koshino K, Oliver W D 2016 Nat. Commun. 7 12303Google Scholar

    [41]

    郭伟杰 2016 博士学位论文 (成都: 西南交通大学)

    Guo W J 2016 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [42]

    Stace T M, Milburn G J, Barnes C H W 2001 Phys. Rev. B 67 085317

    [43]

    Johne R, Gippius N A 2009 Phys. Rev. B: Condens. Matter Mater. Phys. 79 155317Google Scholar

    [44]

    Predojevic A, Huber T, Jezek M, Jayakumar H 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference Munich, May 16, 2013 p6801613

    [45]

    Emary C, Trauzettel B 2005 Phys. Rev. Lett. 95 127401Google Scholar

    [46]

    Shi L K, Chang K, Sun C P 2016 APS March Meeting 2016 Baltimore, Maryland, March 14-18, pG1.00283

    [47]

    Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson R, Duty T L, Nori F, Delsing P 2011 Nature 479 376Google Scholar

    [48]

    Johansson J R, Johansson G, Wilson C M 2010 Phys. Rev. A 82 052509Google Scholar

    [49]

    Johansson J R, Johansson G, Wilson C M, Delsing P, Nori F 2010 Phys. Rev. A 87 043804

    [50]

    Lang C, Eichler C, Steffen L, Fink J M, Woolley M J, Blais A, Wallraff A 2013 Nat. Phys. 9 345Google Scholar

    [51]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027Google Scholar

    [52]

    Yang C P, Su Q P, Zheng S B, Han S Y 2013 Phys. Rev. A 87 022320Google Scholar

    [53]

    Eichler C, Lang C, Fink J M, Govenius J, Filipp S, Wallraff A 2014 Phys. Rev. Lett. 109 240501

    [54]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2014 Phys. Rev. Lett. 114 090503

    [55]

    Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T, Deng F G 2017 arXiv:1709.00120v2 [quant-ph]

    [56]

    Regal C A, Lehnert K W, 2011 J. Phys.: Conf. Ser. 264 012025Google Scholar

    [57]

    刘艳 2016 硕士学位论文 (武汉: 华中师范大学)

    Liu Y 2016 M. S. Dissertation (Wuhan: Central China Normal University) (in Chinese)

    [58]

    谷文举 2014 博士学位论文 (武汉: 华中师范大学)

    Gu W J 2014 Ph. D. Dissertation (Wuhan: Central China Normal University) (in Chinese)

    [59]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [60]

    Tian L 2015 Ann. Phys. 527 1

    [61]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [62]

    Barzanjeh S, de Oliveira M C, Pirandola S 2014 arXiv:1410.4024v1 [quant-ph]

    [63]

    李响, 吴德伟, 苗强, 朱浩男, 魏天丽 2018 物理学报 67 240301Google Scholar

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 Acta Phys. Sin. 67 240301Google Scholar

    [64]

    Wolfgramm F, Cere A, Beduini F A, Predojevi'c A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [65]

    Tang B, Zhang B C, Zhou L, Wang J, Zhan M S 2015 Res. Astron. Astrophys. 15 333Google Scholar

    [66]

    Pielawa S, Morigi G, Vitali D, Davidovich L 2007 Phys. Rev. Lett. 98 240401Google Scholar

    [67]

    Li P B, Li F L 2010 Phys. Rev. A 81 035802Google Scholar

    [68]

    李蓬勃, 李福利 2010 第十四届全国量子光学学术会议 山东曲阜, 2010年8月5−8日, 第36页

    Li P B, Li F L 2010 The 14th National Conference on Quantum Optics Qufu, Shandong, August 5−8, 2010 p36 (in Chinese)

    [69]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510Google Scholar

    [70]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013Google Scholar

    [71]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502Google Scholar

    [72]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P, Wild G, Huebl H, Mariantoni M, Weißl T, Lukashenko A, Zhuravel A P, Ustinov A V, Marx A, Gross R 2010 Appl. Phys. Lett. 97 222508Google Scholar

    [73]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601Google Scholar

    [74]

    Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar

    [75]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296Google Scholar

    [76]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64Google Scholar

    [77]

    Roch N, Flurin E, Nguyen F, Morfin P, Campagne-Ibarcq P, Devoret M H, Huard B 2012 Phys. Rev. Lett. 108 147701Google Scholar

    [78]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901Google Scholar

    [79]

    Alessandro F, Francesco C, Rosario F 2014 Phys. Rev. A 89 022335Google Scholar

    [80]

    Yousif T, Zhou W J, Zhou L 2016 Int. J. Theor. Phys. 55 901Google Scholar

    [81]

    Caspar O K, Erno D, Juha-Matti P, Tero H, Francesco M, Mika S 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [82]

    Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 043802Google Scholar

    [83]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [84]

    Aggarwal N, Debnath K, Mahajan S, Bhattacherjee A B, Mohan M 2014 Int. J. Quantum Inf. 12 1450024Google Scholar

    [85]

    Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar

    [86]

    Palomaki T A, Harlow J W, Teufel J D, Simmonds R W, Lehnert K W 2013 Nature 495 210Google Scholar

    [87]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601Google Scholar

    [88]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys. 527 139Google Scholar

    [89]

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 IEEE Photonics J. 10 6101107

    [90]

    Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018 AIP Adv. 8 065217Google Scholar

    [91]

    Li X, Wu D W, Zhu H N, Miao Q, Wei T L 2018 Results Phys. 11 920Google Scholar

  • [1] Xu Ming-Hui, Liu Xiao-Min, Shi Jia-Jia, Zhang chong, Zhang Jing, Yang Rong-Guo, Gao Jiang-Rui. Generation of microwave-mechanics and magnon-optics entangled states. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241664
    [2] Chen Yong-Qiang, Xu Guang-Yuan, Wang Jun, Fang Yu, Wu Xing-Zhi, Ding Ya-Qiong, Sun Yong. Electromagnetic diode based on asymmetric microwave photonic crystal. Acta Physica Sinica, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [3] Electromagnetic Diode Based on Asymmetric Microwave Photonic Crystal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211291
    [4] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Miao Qiang, Li Xiang. A phase locking scheme of two-mode squeezed microwave preparation. Acta Physica Sinica, 2020, 69(3): 034204. doi: 10.7498/aps.69.20191348
    [5] Luo Jun-Wen, Wu De-Wei, Miao Qiang, Wei Tian-Li. Research progress in non-classical microwave states preparation based on cavity optomechanical system. Acta Physica Sinica, 2020, 69(5): 054203. doi: 10.7498/aps.69.20191735
    [6] Xu Jia-Hao, Wang Yun-Xin, Wang Da-Yong, Zhou Tao, Yang Feng, Zhong Xin, Zhang Hong-Biao, Yang Deng-Cai. Microwave photonic frequency up-converter with LO doubling based on carrier suppression single-sideband modulation. Acta Physica Sinica, 2019, 68(13): 134204. doi: 10.7498/aps.68.20190266
    [7] Ma Yan-Na, Wang Wen-Rui, Song Kai-Chen, Yu Jin-Long, Ma Chuang, Zhang Hua-Fang. Photonic microwave waveform generation based on dual-wavelength time domain synthesis technology. Acta Physica Sinica, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [8] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [9] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [10] Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan. Path-entanglement microwave signals detecting method based on entanglement witness. Acta Physica Sinica, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [11] Li Xiang,  Wu De-Wei,  Miao Qiang,  Zhu Hao-Nan,  Wei Tian-Li. Characteristics and expressions of entangled microwave signals. Acta Physica Sinica, 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [12] Wang Xiang-Lin, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Chen Kun, Fang Guan. An approach to selecting the optimal squeezed parameter for generating path entangled microwave signal. Acta Physica Sinica, 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [13] Wang Yun-Xin, Li Hong-Li, Wang Da-Yong, Li Jing-Nan, Zhong Xin, Zhou Tao, Yang Deng-Cai, Rong Lu. Dual-parallel Mach-Zehnder modulator based microwave photonic down-conversion link with high dynamic range. Acta Physica Sinica, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [14] Bi Xin, Huang Lin, Du Jing-Song, Qi Wei-Zhi, Gao Yang, Rong Jian, Jiang Hua-Bei. Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography. Acta Physica Sinica, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [15] Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [16] Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian. Investigation of the inversion of rainfall field based on microwave links. Acta Physica Sinica, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [17] Song Ming-Yu, Wu Yao-De. Generation of continuous-variable entanglement in a two-mode four-level single-atom driven by microwave. Acta Physica Sinica, 2013, 62(6): 064207. doi: 10.7498/aps.62.064207
    [18] Jiang Wen-Zheng, Yuan Ye-Li, Wang Yun-Hua, Zhang Yan-Min. Investigation on Doppler spectra of microwave scattering from sea surface. Acta Physica Sinica, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [19] Zhou Li-Na, Zhang Xin-Liang, Xu En-Ming, Huang De-Xiu. Q value analysis of a first-order IIR microwave photonic filter based on SOA. Acta Physica Sinica, 2009, 58(2): 1036-1041. doi: 10.7498/aps.58.1036
    [20] Wang Shen-Yun, Liu Shao-Bin. Tunable filter using plasma defect in one-dimensional microwave photonic crystal. Acta Physica Sinica, 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
Metrics
  • Abstract views:  11444
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2018
  • Accepted Date:  16 February 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回