-
Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relation between the pumping field and the modes, the paper shows that microwave-mechanics entanglement Eaband magnon-optics entanglement Ecmcan be generated simultaneously in the cavity opto-magnomechanics system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. By interacting with an optomechanical beam splitter and microwave-magnon state-swap interaction, steady microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm are successfully realized. The entanglement Eaband Ecm in the system is analyzed using the logarithmic negativity. This paper mainly investigates the effect of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement. In particular, the entanglement Eab and Ecm generated in this system can exist both simultaneously and individually. Especially when gam=0, the entanglement Eab and Ecm still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement Eab and Ecm exist even at a temperature of 1.3K. The implications of our research has potential value for applications in the field of quantum information processing and quantum networks.
-
Keywords:
- quantum entanglement /
- opto-magnomechanics /
- two-mode squeezing
-
[1] Tang J F, Hou Z B, Shang J W, Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124060502
[2] Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nature physics 4 99
[3] Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621
[4] Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205 (in Chinese) [杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205]
[5] Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775
[6] Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lv S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501
[7] Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203 (in Chinese) [郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203]
[8] Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206 (in Chinese)
[9] [闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 074203]
[10] Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chinese Physics Letters 29 060304
[11] Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203 (in Chinese) [刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2024 物理学报 29 074203]
[12] Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys.Rev.A 101 043832
[13] Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 7535
[14] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
[15] Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005
[16] Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203 (in Chinese) [罗均文,吴德伟,苗强,魏天丽 2020物理学报 69 054203]
[17] Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
[18] Riedinger R, Wallucks A, Marinkovixc I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473
[19] Wollman E E,Lei C U,Weinstein A J,Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952
[20] [21] Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286
[22] Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys.Rev. Lett. 129 123601
[23] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M,Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[24] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603
[25] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201
[26] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601
[27] Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605
[28] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602
[29] Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291
[30] Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601
[31] Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Applied 15 024042
[32] Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Annalen der Physik 535 2200603
[33] Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507
[34] Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014
[35] Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866
[36] Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108
[37] Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315
[38] Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr 91 053001
[39] Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718
[40] Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[41] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101
[42] Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031
[43] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
[44] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[45] Tan H T, Deng W W, Li G X 2017 Phys.Rev.A 95 053842
[46] Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764
Metrics
- Abstract views: 142
- PDF Downloads: 6
- Cited By: 0