搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海面微波散射场多普勒谱特性研究

姜文正 袁业立 运华 张彦敏

引用本文:
Citation:

海面微波散射场多普勒谱特性研究

姜文正, 袁业立, 运华, 张彦敏

Investigation on Doppler spectra of microwave scattering from sea surface

Jiang Wen-Zheng, Yuan Ye-Li, Wang Yun-Hua, Zhang Yan-Min
PDF
导出引用
  • 基于粗糙面电磁散射双尺度模型推导给出了海面微波散射场多普勒谱频移和谱宽的理论公式, 在该理论公式的推导过程中同时考虑了大尺度海浪的倾斜调制、遮蔽效应和曲率修正效应等因素的影响. 文中将理论公式计算结果与精确数值结果进行了比较, 并讨论了倾斜调制、遮蔽效应及曲率修正效应等因素对多普勒频移和谱宽的影响, 发现倾斜调制使水平极化散射回波多普勒频移显著增大, 从而导致水平极化回波多普勒频移比垂直极化回波多普勒频移大; 在中等入射角度区域, 遮蔽效应和曲率修正效应对多普勒谱并无显著影响, 而在掠射条件下, 遮蔽效应使得多普勒频移增大、谱宽变窄. 本研究对深入理解动态海面散射场频谱特性具有一定参考意义.
    Based on the composite surface scattering model, the analytical formulas for Doppler shift and bandwidth of radar echoes return from time-varying sea surface are derived. In our derivations, the influences of the tilt modulation, the shadow and the curvature of large-scale undulating waves are all taken into account for achieving more reasonable results. Comparisons between the theoretical results and direct numerical simulations demonstrate that the analytical formulas can significantly improve the simulated results. And the effects of the tilt modulation, the shadow and the curvature on Doppler spectral properties are discussed in detail. From the simulated results, it is found that the predicted Doppler shifts are always larger in HH-polarization than in VV-polarization due to the tilt modulation of large-scale waves. In addition, at low-grazing angles, the shadow of large-scale waves results in a rapid increase of the predicted Doppler shift, and on the contrary maks the bandwidth narrower.
    • 基金项目: 国家自然科学基金青年基金(批准号: 40906088)和教育部博士点基金(批准号: 200804231021)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40906088), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200804231021).
    [1]

    Johnson J T, Burkholder R J, Toporkov J V, Lyzenga D R, Plant W J 2009 IEEE Trans. Geosci. Remote Sensing 47 1641

    [2]

    Chapron B, Collard F, Ardhum F 2005 J. Geophys. Res. 110 C07008

    [3]

    Johannessen J A, Kudryavtsev V, Akimov D, Eldevik T, Winther N, Chapron B 2005 J. Geophys. Res. 110 C07017

    [4]

    Kudryavtsev V, Akimov D, Johannessen J A, Chapron B 2005 J. Geophys. Res. 110 doi: 10.1029/ 2004JC002505

    [5]

    Crombie D D 1955 Nature 175 681

    [6]

    Barrick D E 1977 Radio Sci. 12 415

    [7]

    Bass F G, Fuks I M, Kalmykov A I, Ostrovsky I E, Rosenberg A D 1968 IEEE Trans. Antennas Propagat. 16 560

    [8]

    Wright J W, Keller W C 1971 Phys. Fluids 14 466

    [9]

    Mouche A, Chapron B, Reul N, Collard F 2008 Waves Random and Complex Media 18 185

    [10]

    Zhang Y H, Wang Y H, Guo L X 2010 Chin. Phys. B 19 054103

    [11]

    Wang Y H, Zhang Y M 2011 IEEE Trans. Geosci. Remote Sensing 49 1071

    [12]

    Guo L X, Wang R, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464 (in Chinese) [郭立新, 王蕊, 王运华, 吴振森 2008 物理学报 57 3464]

    [13]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sensing 38 1616

    [14]

    Johnson J T, Toporkov J V, Brown G S 2001 IEEE Trans. Geosci. Remote Sensing 39 2411

    [15]

    Soriano G, Joelson M, Saillard M, Marseille P C 2006 IEEE Trans. Geosci. Remote Sensing 44 2430

    [16]

    Wang Y H, Zhang Y M, He M X, Zhao C F 2012 IEEE Trans. Geosci. Remote Sensing 50

    [17]

    Zavorotny V U, Voronovich A G 1998 IEEE Trans. Antennas Propagat 46 84

    [18]

    Voronovich A G, Zavorotny V U 1998 Waves Random Media 8 41

    [19]

    Ulaby F T, Moore R K, Fung A K 1982 Microwave Remote Sensing. Vol. II (Reading, MA: Addision- Wesbey)

    [20]

    Klein L A, Swift C T 1977 IEEE Trans. Antennas Propagat 25 104

    [21]

    Smith B G 1967 Journal of Geophysical Research 72 4059

    [22]

    Keller W C, Plant W J 1994 J. Geophys. Res. 99 9751

  • [1]

    Johnson J T, Burkholder R J, Toporkov J V, Lyzenga D R, Plant W J 2009 IEEE Trans. Geosci. Remote Sensing 47 1641

    [2]

    Chapron B, Collard F, Ardhum F 2005 J. Geophys. Res. 110 C07008

    [3]

    Johannessen J A, Kudryavtsev V, Akimov D, Eldevik T, Winther N, Chapron B 2005 J. Geophys. Res. 110 C07017

    [4]

    Kudryavtsev V, Akimov D, Johannessen J A, Chapron B 2005 J. Geophys. Res. 110 doi: 10.1029/ 2004JC002505

    [5]

    Crombie D D 1955 Nature 175 681

    [6]

    Barrick D E 1977 Radio Sci. 12 415

    [7]

    Bass F G, Fuks I M, Kalmykov A I, Ostrovsky I E, Rosenberg A D 1968 IEEE Trans. Antennas Propagat. 16 560

    [8]

    Wright J W, Keller W C 1971 Phys. Fluids 14 466

    [9]

    Mouche A, Chapron B, Reul N, Collard F 2008 Waves Random and Complex Media 18 185

    [10]

    Zhang Y H, Wang Y H, Guo L X 2010 Chin. Phys. B 19 054103

    [11]

    Wang Y H, Zhang Y M 2011 IEEE Trans. Geosci. Remote Sensing 49 1071

    [12]

    Guo L X, Wang R, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464 (in Chinese) [郭立新, 王蕊, 王运华, 吴振森 2008 物理学报 57 3464]

    [13]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sensing 38 1616

    [14]

    Johnson J T, Toporkov J V, Brown G S 2001 IEEE Trans. Geosci. Remote Sensing 39 2411

    [15]

    Soriano G, Joelson M, Saillard M, Marseille P C 2006 IEEE Trans. Geosci. Remote Sensing 44 2430

    [16]

    Wang Y H, Zhang Y M, He M X, Zhao C F 2012 IEEE Trans. Geosci. Remote Sensing 50

    [17]

    Zavorotny V U, Voronovich A G 1998 IEEE Trans. Antennas Propagat 46 84

    [18]

    Voronovich A G, Zavorotny V U 1998 Waves Random Media 8 41

    [19]

    Ulaby F T, Moore R K, Fung A K 1982 Microwave Remote Sensing. Vol. II (Reading, MA: Addision- Wesbey)

    [20]

    Klein L A, Swift C T 1977 IEEE Trans. Antennas Propagat 25 104

    [21]

    Smith B G 1967 Journal of Geophysical Research 72 4059

    [22]

    Keller W C, Plant W J 1994 J. Geophys. Res. 99 9751

  • [1] 张金鹏, 张玉石, 李清亮, 吴家骥. 基于不同散射机制特征的海杂波时变多普勒谱模型. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [2] 王蕊, 郭立新, 张策. 油膜覆盖的非线性海面电磁散射多普勒谱特性研究. 物理学报, 2018, 67(22): 224102. doi: 10.7498/aps.67.20180184
    [3] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究. 物理学报, 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [4] 李文龙, 郭立新, 孟肖, 刘伟. 含卷浪Pierson-Moscowitz谱海面电磁散射研究. 物理学报, 2014, 63(16): 164102. doi: 10.7498/aps.63.164102
    [5] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [6] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用. 物理学报, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [7] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [8] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性. 物理学报, 2012, 61(23): 234101. doi: 10.7498/aps.61.234101
    [9] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [10] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究. 物理学报, 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [11] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究. 物理学报, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [12] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [13] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [14] 王运华, 张彦敏, 郭立新. 平面上方二维介质目标对高斯波束的电磁散射研究. 物理学报, 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [15] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解. 物理学报, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [16] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [17] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [18] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [20] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
计量
  • 文章访问数:  6110
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-22
  • 修回日期:  2011-10-12
  • 刊出日期:  2012-06-05

/

返回文章
返回