搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角形光脉冲在正色散光纤中产生的实验研究

王华

引用本文:
Citation:

三角形光脉冲在正色散光纤中产生的实验研究

王华

Experimental research of triangular optical pulse generation in normal dispersive fiber

Wang Hua
PDF
导出引用
  • 利用一种无源非线性脉冲整形方法, 实现了在普通正色散(ND)光纤中产生三角形光脉冲, 此方法依赖于脉冲预啁啾和脉冲在ND光纤中传输时群速度色散与自相位调制的相互作用. 实验研究表明, 在较宽的脉冲预啁啾值范围内, 通过优化脉冲输入功率和脉冲传输的ND光纤长度, 均可得到典型的三角形光脉冲: 脉冲时域形状前后沿的变化率接近恒定、整个脉冲具有线性频率啁啾. 另外, 在不同的脉冲预啁啾下, 要得到高质量的三角形光脉冲, 均需要较高的脉冲输入功率; 并且脉冲预啁啾较大时, 三角形脉冲的形成对ND光纤长度和脉冲输入功率有较大的容差, 易获得三角形光脉冲.
    Generation of triangular optical pulses in conventional normal dispersive (ND) fiber is experimentally realized using a passive nonlinear pulse shaping method based on a combination of pulse pre-chirping, group-velocity dispersion and self-phase modulation in a section of ND fiber. It is found that by optimizing the parameters of launching pulse power level and ND fiber length, high-quality triangular optical pulses with nearly constant gradients of leading and trailing edges and linear frequency chirp profiles can be obtained for a wide range of different pulse pre-chirping values. For different pulse pre-chirpings, high launch power is required for triangular optical pulse generation. The tolerance of triangular pulse formation to ND fiber length and launch power level is improved with the increase of pulse pre-chirping, which means that it is easy to obtain triangular pulses for higher pulse pre-chirping.
    [1]

    Kravtsov K, Deng Y, Prucnal P R 2009 IEEE J. Quantum Electron. 45 396

    [2]

    Camerlingo A, Parmigiani F, Xian F 2010 IEEE Photon. Technol. Lett. 22 628

    [3]

    Lu Y X, Yang X, Sun S 2009 Acta Phys. Sin. 58 2467 (in Chinese) [吕玉祥, 杨星, 孙帅 2009 物理学报 58 2467]

    [4]

    Parmigiani F, Petropoulos P, Ibsen M 2006 IEEE Photon. Technol. Lett. 18 829

    [5]

    Finot C, Dudley J M, Kibler B 2009 IEEE J. Quantum Electron. 45 1482

    [6]

    Kanaka R P, Masayuki K 2011 New J. Phys. 13 023030

    [7]

    Deng Y X, Tu C H, Lu F Y 2009 Acta Phys. Sin. 58 3173 (in Chinese) [邓一鑫, 涂成厚, 吕福云 2009 物理学报 58 3173]

    [8]

    Parmigiani F, Ng T T, Ibsen M 2008 IEEE Photon. Technol. Lett. 20 1992

    [9]

    Parmigiani F, Ibsen M, Ng T T 2009 IEEE Photon. Technol. Lett. 21 1837

    [10]

    Li J, Olsson B E, Karlsson M 2005 J. Lightwave Technol. 23 2654

    [11]

    Latkin A I, Boscolo S, Bhamber R S 2009 J. Opt. Soc. Am. B 26 1492

    [12]

    Bhamber R S, Latkin A I, Boscolo S 2008 ECOC Brussels Belgium Th.1.B.2

    [13]

    Agrawal G P 2007 Nonlinear Fiber Optics (New York: Academic Press)

    [14]

    Park Y, Asghari M H, Ahn T J 2007 Opt. Express 15 9584

    [15]

    Boscolo S, Latkin A I, Turitsyn S K 2008 IEEE J. Quantum Electron. 44 1196

    [16]

    Latkin A I, Boscolo S, Turitsyn S K 2008 Proc. OFC Paper OTuB7

    [17]

    Wang H, Latkin A I, Boscolo S 2009 CLEO-Europe Paper CD.P.32 TUE

    [18]

    Wang H, Latkin A I, Boscolo S 2010 J. Opt. 12 035205

    [19]

    Dudley J M, Barry L P, Bollond P G 1998 Opt. Fiber Technol. 4 237

  • [1]

    Kravtsov K, Deng Y, Prucnal P R 2009 IEEE J. Quantum Electron. 45 396

    [2]

    Camerlingo A, Parmigiani F, Xian F 2010 IEEE Photon. Technol. Lett. 22 628

    [3]

    Lu Y X, Yang X, Sun S 2009 Acta Phys. Sin. 58 2467 (in Chinese) [吕玉祥, 杨星, 孙帅 2009 物理学报 58 2467]

    [4]

    Parmigiani F, Petropoulos P, Ibsen M 2006 IEEE Photon. Technol. Lett. 18 829

    [5]

    Finot C, Dudley J M, Kibler B 2009 IEEE J. Quantum Electron. 45 1482

    [6]

    Kanaka R P, Masayuki K 2011 New J. Phys. 13 023030

    [7]

    Deng Y X, Tu C H, Lu F Y 2009 Acta Phys. Sin. 58 3173 (in Chinese) [邓一鑫, 涂成厚, 吕福云 2009 物理学报 58 3173]

    [8]

    Parmigiani F, Ng T T, Ibsen M 2008 IEEE Photon. Technol. Lett. 20 1992

    [9]

    Parmigiani F, Ibsen M, Ng T T 2009 IEEE Photon. Technol. Lett. 21 1837

    [10]

    Li J, Olsson B E, Karlsson M 2005 J. Lightwave Technol. 23 2654

    [11]

    Latkin A I, Boscolo S, Bhamber R S 2009 J. Opt. Soc. Am. B 26 1492

    [12]

    Bhamber R S, Latkin A I, Boscolo S 2008 ECOC Brussels Belgium Th.1.B.2

    [13]

    Agrawal G P 2007 Nonlinear Fiber Optics (New York: Academic Press)

    [14]

    Park Y, Asghari M H, Ahn T J 2007 Opt. Express 15 9584

    [15]

    Boscolo S, Latkin A I, Turitsyn S K 2008 IEEE J. Quantum Electron. 44 1196

    [16]

    Latkin A I, Boscolo S, Turitsyn S K 2008 Proc. OFC Paper OTuB7

    [17]

    Wang H, Latkin A I, Boscolo S 2009 CLEO-Europe Paper CD.P.32 TUE

    [18]

    Wang H, Latkin A I, Boscolo S 2010 J. Opt. 12 035205

    [19]

    Dudley J M, Barry L P, Bollond P G 1998 Opt. Fiber Technol. 4 237

计量
  • 文章访问数:  2940
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-18
  • 修回日期:  2011-11-10
  • 刊出日期:  2012-06-05

三角形光脉冲在正色散光纤中产生的实验研究

  • 1. 江西省电力公司信息通信中心, 南昌 330077

摘要: 利用一种无源非线性脉冲整形方法, 实现了在普通正色散(ND)光纤中产生三角形光脉冲, 此方法依赖于脉冲预啁啾和脉冲在ND光纤中传输时群速度色散与自相位调制的相互作用. 实验研究表明, 在较宽的脉冲预啁啾值范围内, 通过优化脉冲输入功率和脉冲传输的ND光纤长度, 均可得到典型的三角形光脉冲: 脉冲时域形状前后沿的变化率接近恒定、整个脉冲具有线性频率啁啾. 另外, 在不同的脉冲预啁啾下, 要得到高质量的三角形光脉冲, 均需要较高的脉冲输入功率; 并且脉冲预啁啾较大时, 三角形脉冲的形成对ND光纤长度和脉冲输入功率有较大的容差, 易获得三角形光脉冲.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回