搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含卷浪Pierson-Moscowitz谱海面电磁散射研究

李文龙 郭立新 孟肖 刘伟

引用本文:
Citation:

含卷浪Pierson-Moscowitz谱海面电磁散射研究

李文龙, 郭立新, 孟肖, 刘伟

Modeling and electromagnetic scattering from the overturning wave crest

Li Wen-Long, Guo Li-Xin, Meng Xiao, Liu Wei
PDF
导出引用
  • 海尖峰的存在会导致雷达虚警概率的上升和多目标环境中检测性能下降,因此研究海尖峰现象意义重大. 海尖峰现象的一个重要特点是海面的水平极化散射强度接近甚至大于垂直极化散射强度,卷浪被认为是产生海尖峰的一个原因. 首先建立了卷浪和Pierson-Moscowitz谱海面的共同模型,利用矩量法研究了卷浪模型的水平和垂直后向电磁散射特征,包括入射频率、入射角、风速和风向对电磁散射特征的影响. 发现在小擦地角情况和较大风速下超级现象(水平散射强度大于垂直极化散射强度)比较明显,从而推论出在小擦地角入射下产生海尖峰现象的概率较大. 同时对时变卷浪在小擦地角入射时的海杂波幅值分布特性和多普勒谱进行了分析.
    The presence of sea spikes can cause the radar false alarm probability rise and performance degradation of multi-target environment detection. Therefore, study of the phenomenon of sea spikes is of great significance. HH polarization scattering intensity close to or even greater than the VV polarization scattering intensity is an important feature of sea spike phenomenon. Overturning wave crest is considered to be one of the reasons of generating sea spike. In this paper, overturning wave crest model is introduced with the consideration of the wind speed, and the method of moment is used for studying HH and VV backward scattering coefficient for different incident frequencies, incident angles, wind speeds, and wind directions. It is found that super phenomenon (HH scattering intensity is greater than VV polarization scattering intensity) is more obvious in the cases of low grazing and large wind speed, thus it is deduced that the sea spike phenomenon occurs with a high probability in the case of low grazing angle. Moreover, the distributions of sea clutter amplitude and Doppler spectra are also examined for the overturning wave crest model with low grazing incidence.
    • 基金项目: 国家杰出青年科学基金(批准号:61225002)和航空科学基金与航空电子系统射频综合仿真航空科技重点实验室联合项目(批准号:20132081015)资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225002) and the Aeronautical Science Fund and Aviation Key Laboratory of Science and Technology on Avionics Integrated Sensor System Simulation (Grant No. 20132081015).
    [1]

    Jessup A T, Melville W K, Keller W C 1990 IEEE Proceedings Geoscience and Remote Sensing Symposium College Park, USA, May 20-24, 1990 p765

    [2]

    Xie T, Shen T, Perrie W, Chen W, Kuang H L 2010 Chin. Phys. B 19 054102

    [3]
    [4]
    [5]

    Walker D 2001 IEE Proc. Radar Sonar Navig. 148 73

    [6]

    Lamont-Smith T 2008 IET. Radar Sonar Navig. 2 97

    [7]
    [8]

    Sobieski P, Guissard A, Baufays C 1991 IEEE Trans. Geosci. Remote Sens. 29 391

    [9]
    [10]

    Dano E B, Lyzenga D R 1996 Remote Sensing for a Sustainable Future Lincoln, USA, May 27-31, 1996 p2198

    [11]
    [12]

    Holliday D, Deraad Jr L L, St-Cyr G J 1998 IEEE Trans. Antenn. Propag. 46 108

    [13]
    [14]
    [15]

    West J C 2000 IEEE Proceedings Geoscience and Remote Sensing Symposium Honolulu, USA, July 2428, 2000 p3120

    [16]
    [17]

    West J C 2002 IEEE Trans. Geosci. Remote Sens. 40 523

    [18]
    [19]

    Trizna D B 1997 IEEE Trans. Geosci. Remote Sens. 35 1232

    [20]

    Li Z K 2006 M. S. Thesis (Tsingtao: Ocean University of China) (in Chinese) [李宗宽 2006 硕士学位论文 (青岛: 中国海洋大学)]

    [21]
    [22]
    [23]

    Lindsay R W, Percival D B 1996 IEEE Trans. Geosci. Remote Sens. 34 771

    [24]
    [25]

    Tian Y Y, Tan Q C 2011 J. Wuhan Univ. Technol. (Nat. Sci.) 11 153 (in Chinese) [田原嫄, 谭庆昌 2011 武汉理工大学学报 (自然科学版) 11 153]

    [26]

    Luo W, Zhang M, Zhou P, Yin H C 2010 Chin. Phys. B 19 084102

    [27]
    [28]

    Du Z J, Lin W T, Mo J Q 2012 Chin. Phys. B 21 090201

    [29]
    [30]
    [31]

    Guo L X, Wang R, Wu Z S 2010 Chin. Phys. B 19 044102

    [32]
    [33]

    Guo L X, Wang R, Wu Z S 2010 Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface (Beijing: Science Press) p63 (in Chinese) [郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论和方法 (北京: 科学出版社) 第63页]

    [34]
    [35]

    Lai H J, Hao Z F 2008 Probability and Statistics (Beijing: Higher Education Press)

    [36]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [37]
    [38]

    Guo L X, Wang Y, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464 (in Chinese) [郭立新, 王蕊, 王运华, 吴振森 2008 物理学报 57 3464]

    [39]
    [40]
    [41]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

  • [1]

    Jessup A T, Melville W K, Keller W C 1990 IEEE Proceedings Geoscience and Remote Sensing Symposium College Park, USA, May 20-24, 1990 p765

    [2]

    Xie T, Shen T, Perrie W, Chen W, Kuang H L 2010 Chin. Phys. B 19 054102

    [3]
    [4]
    [5]

    Walker D 2001 IEE Proc. Radar Sonar Navig. 148 73

    [6]

    Lamont-Smith T 2008 IET. Radar Sonar Navig. 2 97

    [7]
    [8]

    Sobieski P, Guissard A, Baufays C 1991 IEEE Trans. Geosci. Remote Sens. 29 391

    [9]
    [10]

    Dano E B, Lyzenga D R 1996 Remote Sensing for a Sustainable Future Lincoln, USA, May 27-31, 1996 p2198

    [11]
    [12]

    Holliday D, Deraad Jr L L, St-Cyr G J 1998 IEEE Trans. Antenn. Propag. 46 108

    [13]
    [14]
    [15]

    West J C 2000 IEEE Proceedings Geoscience and Remote Sensing Symposium Honolulu, USA, July 2428, 2000 p3120

    [16]
    [17]

    West J C 2002 IEEE Trans. Geosci. Remote Sens. 40 523

    [18]
    [19]

    Trizna D B 1997 IEEE Trans. Geosci. Remote Sens. 35 1232

    [20]

    Li Z K 2006 M. S. Thesis (Tsingtao: Ocean University of China) (in Chinese) [李宗宽 2006 硕士学位论文 (青岛: 中国海洋大学)]

    [21]
    [22]
    [23]

    Lindsay R W, Percival D B 1996 IEEE Trans. Geosci. Remote Sens. 34 771

    [24]
    [25]

    Tian Y Y, Tan Q C 2011 J. Wuhan Univ. Technol. (Nat. Sci.) 11 153 (in Chinese) [田原嫄, 谭庆昌 2011 武汉理工大学学报 (自然科学版) 11 153]

    [26]

    Luo W, Zhang M, Zhou P, Yin H C 2010 Chin. Phys. B 19 084102

    [27]
    [28]

    Du Z J, Lin W T, Mo J Q 2012 Chin. Phys. B 21 090201

    [29]
    [30]
    [31]

    Guo L X, Wang R, Wu Z S 2010 Chin. Phys. B 19 044102

    [32]
    [33]

    Guo L X, Wang R, Wu Z S 2010 Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface (Beijing: Science Press) p63 (in Chinese) [郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论和方法 (北京: 科学出版社) 第63页]

    [34]
    [35]

    Lai H J, Hao Z F 2008 Probability and Statistics (Beijing: Higher Education Press)

    [36]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [37]
    [38]

    Guo L X, Wang Y, Wang Y H, Wu Z S 2008 Acta Phys. Sin. 57 3464 (in Chinese) [郭立新, 王蕊, 王运华, 吴振森 2008 物理学报 57 3464]

    [39]
    [40]
    [41]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

  • [1] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [2] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究. 物理学报, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [3] 金铭, 韦笑, 吴洋, 张羽淮, 余西龙. 激波风洞设施中的等离子体包覆目标电磁散射实验研究. 物理学报, 2015, 64(20): 205205. doi: 10.7498/aps.64.205205
    [4] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析. 物理学报, 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [5] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [6] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究. 物理学报, 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [7] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [8] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用. 物理学报, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [9] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性. 物理学报, 2012, 61(23): 234101. doi: 10.7498/aps.61.234101
    [10] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [11] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究. 物理学报, 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [12] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究. 物理学报, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [13] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [14] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [15] 王运华, 张彦敏, 郭立新. 平面上方二维介质目标对高斯波束的电磁散射研究. 物理学报, 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [16] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [17] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解. 物理学报, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [18] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [20] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
计量
  • 文章访问数:  3505
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2014-03-28
  • 刊出日期:  2014-08-05

含卷浪Pierson-Moscowitz谱海面电磁散射研究

  • 1. 西安电子科技大学物理与光电工程学院, 西安 710071
    基金项目: 国家杰出青年科学基金(批准号:61225002)和航空科学基金与航空电子系统射频综合仿真航空科技重点实验室联合项目(批准号:20132081015)资助的课题.

摘要: 海尖峰的存在会导致雷达虚警概率的上升和多目标环境中检测性能下降,因此研究海尖峰现象意义重大. 海尖峰现象的一个重要特点是海面的水平极化散射强度接近甚至大于垂直极化散射强度,卷浪被认为是产生海尖峰的一个原因. 首先建立了卷浪和Pierson-Moscowitz谱海面的共同模型,利用矩量法研究了卷浪模型的水平和垂直后向电磁散射特征,包括入射频率、入射角、风速和风向对电磁散射特征的影响. 发现在小擦地角情况和较大风速下超级现象(水平散射强度大于垂直极化散射强度)比较明显,从而推论出在小擦地角入射下产生海尖峰现象的概率较大. 同时对时变卷浪在小擦地角入射时的海杂波幅值分布特性和多普勒谱进行了分析.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回