-
Neuromorphic electronics has received considerable attention recent years, and its basic functional units are synaptic electronic devices. A two-terminal artificial synapse with sandwiched structure emulates plasticity of the biological synapses under the action of nerve-like electrical impulse signals. In this paper, P3 phase Na2/3Ni1/3Mn2/3O2 multi-element metal oxides with layered structure are synthesized by sol-gel process. Owing to the fact that Na+ is easy to embed/eject into its crystal structure, an ion-migrating artificial synapse based on Na2/3Ni1/3Mn2/3O2 is designed and fabricated. The device emulates important synaptic plasticity, such as excitatory postsynaptic current, paired-pulse facilitation, spike-number dependent plasticity, spike-frequency dependent plasticity, spike-voltage amplitude dependent plasticity and spike-duration dependent plasticity. The device realizes the identification and response to Morse code commands.
-
Keywords:
- artificial synapses /
- ion transport /
- multi-metal oxides /
- synaptic plasticity
[1] Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar
[2] Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar
[3] Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar
[4] Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar
[5] Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar
[6] Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[7] Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar
[8] Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar
[9] Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar
[10] Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar
[11] Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar
[12] Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar
[13] Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar
[14] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar
[15] Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar
[16] Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar
[17] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar
[18] Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar
[19] Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar
[20] Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar
[21] Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar
[22] Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar
[23] Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar
[24] Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar
[25] Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar
[26] Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar
[27] Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar
[28] Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar
[29] Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar
[30] Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar
[31] Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar
[32] Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar
[33] Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar
[34] Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar
[35] Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar
[36] Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar
[37] Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar
[38] Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar
[39] Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar
[40] López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar
[41] Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar
[42] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar
Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar
[43] Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar
[44] Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar
[45] Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar
[46] Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar
-
图 2 (a) Na2/3Ni1/3Mn2/3O2粉末X射线衍射测试图; (b) Na2/3Ni1/3Mn2/3O2粉末扫描电子显微镜测试图; (c) Na2/3Ni1/3Mn2/3O2粉末X射线能谱分析图; (d) Na2/3Ni1/3Mn2/3O2活性层扫描电子显微镜表面形貌测试图; (e) 底电极铝箔、Na2/3Ni1/3Mn2/3O2活性层与PEO-Na电解质薄层扫描电子显微镜断面形貌测试图; (f) Na2/3Ni1/3Mn2/3O2活性层原子力显微镜测试图
Figure 2. (a) X-ray diffraction test diagram of Na2/3Ni1/3Mn2/3O2 powder; (b) scanning electron microscope test diagram of Na2/3Ni1/3Mn2/3O2 powder; (c) EDS test diagram of Na2/3Ni1/3Mn2/3O2 powder; (d) surface topography test diagram of Na2/3Ni1/3Mn2/3O2 active layer scanning electron microscope ; (e) bottom electrode Al foil, Na2/3Ni1/3Mn2/3O2 active layer and PEO-Na electrolyte thin layer scanning electron microscope cross-sectional morphology test diagram; (f) atom force microscope test diagram of Na2/3Ni1/3Mn2/3O2 active layer.
图 3 (a) 单次阻变特性测试; (b) 连续50次阻变特性稳定能力测试; (c) 对器件施加单个幅值为0.2 V的电脉冲信号所产生的EPSC; (d) 对器件连续施加两个幅值为0.2 V的电脉冲信号所产生的PPF; 对器件施加多对时间间隔不同幅值为0.2 V的电脉冲信号所产生的(e) PPF以及(f) PPF指数
Figure 3. (a) Single resistance characteristic test; (b) 50 consecutive tests of resistance characteristic stability; (c) EPSC generated by applying a single electrical pulse signal with an amplitude of 0.2 V to the device; (d) PPF generated by continuously applying two electrical pulse signals with an amplitude of 0.2 V to the device; (e) PPF and (f) PPF index generated by applying multiple pairs of electrical pulse signals with different amplitudes of 0.2 V to the device.
图 4 对器件连续施加10个幅值为0.2 V的电脉冲信号所产生的 (a) SNDP以及(b) SNDP 指数; (c) 对器件施加幅值从0 V—4 V—0 V变化的10组电脉冲信号循环所产生的SVDP; 对器件施加多个脉冲宽度不同幅值为0.2 V的电脉冲信号所产生的(d) SDDP以及(e) SDDP 指数; (f) 对器件连续施加多组频率不同幅值为0.2 V的电脉冲信号所产生的SFDP
Figure 4. (a) SNDP and (b) SNDP index generated by continuously applying 10 electrical pulse signals with an amplitude of 0.2 V to the device; (c) 10 groups of amplitudes varying from 0 V to 4 V to 0 V are applied to the device SVDP generated by electrical pulse signal cycle; (d) SDDP and (e) SDDP index generated by applying multiple electrical pulse signals with different pulse widths and amplitudes of 0.2 V to the device; (f) SFDP generated by continuously applying multiple groups of electrical pulse signals with the different frequencies and amplitudes of 0.2 V to the device.
-
[1] Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar
[2] Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar
[3] Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar
[4] Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar
[5] Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar
[6] Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[7] Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar
[8] Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar
[9] Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar
[10] Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar
[11] Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar
[12] Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar
[13] Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar
[14] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar
[15] Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar
[16] Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar
[17] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar
[18] Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar
[19] Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar
[20] Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar
[21] Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar
[22] Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar
[23] Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar
[24] Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar
[25] Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar
[26] Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar
[27] Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar
[28] Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar
[29] Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar
[30] Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar
[31] Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar
[32] Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar
[33] Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar
[34] Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar
[35] Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar
[36] Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar
[37] Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar
[38] Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar
[39] Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar
[40] López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar
[41] Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar
[42] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar
Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar
[43] Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar
[44] Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar
[45] Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar
[46] Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar
Catalog
Metrics
- Abstract views: 5466
- PDF Downloads: 252
- Cited By: 0