Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting

Hua Hong-Tao Lu Bo Gu Hua-Guang

Citation:

Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting

Hua Hong-Tao, Lu Bo, Gu Hua-Guang
PDF
HTML
Get Citation
  • Excitatory and inhibitory effect always induces the enhancement and inhibitory effect of neural electronic activities, which is the common viewpoint of the modulations to the neural firing and plays important roles in the information processing of the nervous system. In the present paper, the Homoclinic/Homoclinic bursting pattern with alternation behavior between burst containing multiple spikes and subthreshold oscillations and the tough value of the burst lower than that of the subthreshold oscillations is chosen as representative, and the excitatory effect on the complex nonlinear dynamics of the representative bursting pattern is studied. For the excitatory autapse with suitable autaptic time delay and strength, the autaptic current pulse applied to the trough of the burst can induce the number of spikes within a burst to decrease and then the average firing frequency to decline, which presents a novel example different from the common viewpoint of the excitatory effect. The excitatory autapse induces the average firing frequency to increase in the remained parameter region of two-parameter plane of the autaptic time delay and strength. With bifurcations acquired by the fast/slow variable dissection method and phase trajectory, the subthreshold oscillations of the bursting correspond to a subthreshold limit cycle of the fast subsystem and the spike within burst corresponds to a suprathreshold limit cycle, and excitatory autaptic current can induce the transition from suprathreshold limit cycle to subthreshold limit cycle, which leads the spike to terminate in advance and is the cause for reducing the average firing frequency. The results is the present paper are compared with the phenomenon and bifurcation mechanism that the excitatory autapse can induce the spike number to decrease within a burst but the average firing frequency to increase as indicated in a recent study on the Fold/Homoclinic bursting. These results enrich the uncommon phenomenon of the neuronal electrical activities, reveal the underlying nonlinear mechanism, provide a new way to regulate the bursting pattern, and disclose the potential functions of the excitatory autapse.
      Corresponding author: Lu Bo, cheersnow@163.com
    [1]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270Google Scholar

    [2]

    Glass L 2001 Nature 410 277Google Scholar

    [3]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161Google Scholar

    [4]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113Google Scholar

    [5]

    Rinzel J, Lee Y S 1987 J. Math. Biol. 25 653Google Scholar

    [6]

    Del Negro C A, Hsiao C F, Chandler S H, Garfinkel A 1998 Biophys. J. 75 174Google Scholar

    [7]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171Google Scholar

    [8]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [9]

    Chay T R 1985 Physica D 16 233Google Scholar

    [10]

    Holden A V, Fan Y S 1992 Chaos, Solitons Fractals 2 221Google Scholar

    [11]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183Google Scholar

    [12]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [13]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [14]

    Lu B, Liu S Q, Liu X L, Jiang X F, Wang X H 2016 Int. J. Bifurcation Chaos 26 1650090Google Scholar

    [15]

    谢勇, 程建慧 2017 物理学报 66 090501Google Scholar

    Xie Y, Cheng J H 2017 Acta Phys. Sin. 66 090501Google Scholar

    [16]

    Dodla R, Rinzel J 2006 Phys. Rev. E 73 010903Google Scholar

    [17]

    Wu F Q, Gu H G, Li Y Y 2019 Commun. Nonlinear Sci. Numer. Simul. 79 104924Google Scholar

    [18]

    丁学利, 李玉叶 2016 物理学报 65 210502Google Scholar

    Ding X L, Li Y Y 2016 Acta Phys. Sin. 65 210502Google Scholar

    [19]

    Beiderbeck B, Myoga M H, Müller N, Callan A R, Friauf E, Grothe B, Pecka M 2018 Nat. Commun. 9 1771Google Scholar

    [20]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030Google Scholar

    [21]

    曹奔, 关利南, 古华光 2018 物理学报 67 240502Google Scholar

    Cao B, Guan L N, Gu H G 2018 Acta Phys. Sin. 67 240502Google Scholar

    [22]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166Google Scholar

    [23]

    Han F, Gu X C, Wang Z J, Fan H, Cao J F, Lu Q S 2018 Chaos 28 106324Google Scholar

    [24]

    Gu H G, Zhao Z G 2015 PLoS One 10 e0138593Google Scholar

    [25]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599Google Scholar

    [26]

    Uzuntarla M, Torres J J, Calim A, Barreto E 2019 Neural Networks 110 131Google Scholar

    [27]

    Guo D Q, Wu S D, Chen M M, Matjaž Perc, Zhang Y S, Ma J L, Xu P, Xia Yang, Yao D Z 2016 Sci. Rep. 6 26096Google Scholar

    [28]

    Wu S D, Zhang Y S, Cui Y, Li H, Wang J K, Guo L J, Xia Yang, Yao D Z, Xu P, Guo D Q 2019 Neural Networks 110 91Google Scholar

    [29]

    Loos H V D, Glaser E M 1972 Brain Res. 48 355Google Scholar

    [30]

    Bekkers J M 2003 Curr. Biol. 13 R433Google Scholar

    [31]

    Lübke J, Markram H, Frotscher M, Sakmann B 1996 J. Neurosci. 16 3209Google Scholar

    [32]

    Tamás G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352Google Scholar

    [33]

    Cobb S R, Halasy K, Vida I, Nyiri G, Tamás G, Buhl E H, Somogyi P 1997 Neurosci. 79 629Google Scholar

    [34]

    Bacci A, Huguenard J R 2006 Neuron 49 119Google Scholar

    [35]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479Google Scholar

    [36]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602Google Scholar

    [37]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64Google Scholar

    [38]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743Google Scholar

    [39]

    Lisman J E 1997 Trends Neurosci. 20 38Google Scholar

    [40]

    Yin L, Zheng R, Ke W, He Q, Zhang Y, Li J, Wang B, Mi Z, Long YS, Rasch MJ, Li T, Luan G, Shu Y 2018 Nat. Commun. 9 4890Google Scholar

    [41]

    Tikidji-Hamburyan R A, Martinez J J, White J A, Canavier C C 2015 J. Neurosci. 35 15682Google Scholar

    [42]

    Li Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907Google Scholar

    [43]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709Google Scholar

    [44]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001Google Scholar

    [45]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586Google Scholar

    [46]

    Yang X L, Yu Y H, Sun Z K 2017 Chaos 27 083117Google Scholar

    [47]

    Qin H X, Ma J, Wa ng, C N, Wu Y 2014 PLoS One 9 e100849Google Scholar

    [48]

    Wu Y N, Gong Y B, Wang Q 2015 Chaos 25 043113Google Scholar

    [49]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538Google Scholar

    [50]

    Yilmaz E, Ozer M, Baysal V, Perc M 2016 Sci. Rep. 6 30914Google Scholar

    [51]

    Li Y Y, Gu H G, Ding X L 2019 Nonlinear Dyn. 97 2091Google Scholar

    [52]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549Google Scholar

    [53]

    Yao C G, He Z W, Nakano T, Qian Y, Shuai J W 2019 Nonlinear Dyn. 97 1425Google Scholar

    [54]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [55]

    Yamamoto A, Ichikawa M 2012 Phys. Rev. E 86 061905Google Scholar

    [56]

    Fitzhugh R 1955 Bull. Math. Biophys. 17 257Google Scholar

    [57]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [58]

    Jia Y B, Lu B, Gu H G 2019 Int. J. Mod. Phys. B 33 1950242Google Scholar

    [59]

    Yamakou M E, Tran T D, Duc L H 2019 J. Math. Biol. 79 509Google Scholar

    [60]

    Che Y Q, Geng L H, Han C X, Cui S G, Wang J 2012 Chaos 22 1349Google Scholar

    [61]

    Blumenthal N B 2012 Nonlinearity 25 2303Google Scholar

    [62]

    Mischler S, Quiñinao C, Touboul J 2016 Commun. Math. Phys. 342 1001Google Scholar

    [63]

    Kosmidis E K, Pakdaman K 2003 J. Comput. Neurosci. 14 5Google Scholar

    [64]

    Borowski P, Kuske R, Li Y X, Cabrera J L 2010 Chaos 20 043117Google Scholar

    [65]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411Google Scholar

    [66]

    Dhooge A, Govaerts W, Kuznetsov Y A 2003 ACM T. Math. Software 29 141Google Scholar

  • 图 1  改进FHN模型簇放电模式及其快慢变量分离 (a) 周期8簇(圆圈对应V = –0.3396, t = 141.15); (b) 快子系统的分岔, 其中黑色实线、黑色虚线、蓝色点线和蓝色虚线分别表示稳定结点、稳定焦点、鞍点和不稳定焦点; L1和L2为两个鞍结分岔点、H1和H2为两个Hopf分岔点; 从H1开始的上下两个洋红色实线分别表示阈下稳定极限环的最大值与最小值, SH1为鞍同宿轨分岔点, 对应u 1 = –0.760022; 从H2开始的上、下两个红色实线分别表示阈上稳定极限环的最大值与最小值, SH2为鞍同宿轨分岔点, 对应u 2 = –0.959267; (c) 图(b)与周期8簇放电轨线(蓝色实线)的叠加; (d) 图(c)的局部放大

    Figure 1.  Bursting pattern and fast/slow variable dissection of the modified FHN model. (a) Period-8 bursting pattern (the position of the hollow circle corresponds to V = –0.3396 and t = 141.15). (b) The bifurcations of the fast subsystem. The black solid line, black dashed line, blue dotted line, and blue dashed line represent the stable node, the stable focus, the saddle, and the unstable focus. There are two fold bifurcation points of equilibrium point L1 and L2 and two Hopf bifurcation points H1 and H2. The maximum (minimum) value of the subthreshold stable limit cycle is represented by the upper (lower) magenta solid line, and the homoclinic bifurcation point SH1 corresponds to u 1 = –0.760022. The maximum (minimum) value of the suprathreshold stable limit cycle corresponds to upper (lower) solid red line, and the homoclinic bifurcation point SH2 corresponds to u 2 = –0.959267. (c) The trajectory of period-8 bursting (solid blue line) and panel (b) plotted in one figure. (d) The partial enlargement of panel (c).

    图 2  改进FHN模型的快子系统和全系统在相平面(w, V)的动力学行为 (a) u = –0.8513时快子系统的阈上极限环(红色虚线)和阈下极限环(洋红色虚线), 箭头表示轨线运行方向, $\dot V$的零值线(蓝色点线)和$\dot w$的零值线(蓝色虚线), “□”表示不稳定焦点, “○”表示鞍点; (b)全系统周期8簇放电的轨线在相平面(w, V)的投影(蓝色实线, 箭头为运行方向)与图(a)中阈上(红色虚线)和阈下极限环(洋红色虚线)的叠加

    Figure 2.  Dynamical behavior of fast subsystem and whole system in plane (w, V) of the modified FHN model: (a) The suprathreshold stable limit cycle (red dashed line), the subthreshold stable limit cycle (magenta dashed line), the direction of the trajectory (arrow), and the nullcline of $\dot V$ (blue dotted line) and $\dot w$ (blue dashed line) of the fast subsystem corresponds to u = –0.8513; “□” represents the unstable focus, and “○” represents the saddle; (b) the projection (solid blue line) of period-8 bursting of the whole system onto the phase plane (w, V), and suprathreshold stable limit cycle (red dashed line) and the subthreshold stable limit cycle (magenta dashed line) in panel (a) plotted in one figure.

    图 3  兴奋性脉冲(绿色实线)作用在周期8簇放电(蓝色点线)的簇内第1—7个谷值附近, 使系统跃迁到阈下极限环(洋红色虚线)提前结束放电(黑色实线), 然后分别经过2, 3, 4, 4, 5, 6和7个阈下振荡后先是经过9个放电峰, 然后恢复到周期8簇放电 (a1), (a2) Δt = 69.7, 作用在第1谷值附近; (b1), (b2) Δt = 78.35, 作用在第2谷值附近; (c1), (c2) Δt = 87.15, 作用在第3谷值附近; (d1), (d2) Δt = 96.2, 作用在第4谷值附近; (e1), (e2) Δt = 105.55, 作用在第5谷值附近; (f1), (f2) Δt = 115.25, 作用在第6谷值附近; (g1), (g2) Δt = 125.5, 作用在第7谷值附近; 左列, 放电; 右列, 对应左列图中“►”到“■”之间部分在相平面(w, V)的轨迹(黑实线)和快子系统的阈上(红虚线)和阈下(洋红虚线)极限环的轨迹图(u = –0.8513); “►”表示脉冲作用前放电峰的峰值的位置和轨线的顺时针运行方向, “●”表示脉冲作用相位, “■”表示恢复簇放电后的第1个峰值

    Figure 3.  Transition from suprathreshold stable limit cycle (dashed red line) to subthreshold stable limit cycle (dashed magenta line) to terminate the firing (solid black line) in advance induced by excitatory impulse (solid green line) applied at suitable phase near the 1st to 8th trough within burst of the period-8 bursting (dotted blue line), and recover to period-8 bursting after 2, 3, 4, 4, 5, 6 and 7 subthreshold oscillations and one period-9 bursting. (a1), (a2) Δt = 69.7, application phase near the 1st trough; (b1), (b2) Δt = 78.35, application phase near the 2nd trough; (c1), (c2) Δt = 87.15, application phase near the 3rd trough; (d1), (d2) Δt = 96.2, application phase near the 4th trough; (e1), (e2) Δt = 105.55, application phase near the 5th trough; (f1), (f2) Δt = 115.25, application phase near the 6th trough; (g1), (g2) Δt = 125.5, application phase near the 7th trough. Left column: bursting; Right column: The projections (black solid line) in the phase plane (w, V) corresponding to the part between “►” and “■” of the corresponding left figure, and the suprathreshold stable limit cycle (red dashed line) and the subthreshold stable limit cycle (magenta dashed line) corresponding to u = –0.8513 plotted in one figure; “►” represents the peak of the spike within burst before the pulse stimulation and clockwise direction of the trajectory, “●” represents the application phase of the pulse, and “■” represents the first peak after the recovery of bursting.

    图 4  具有兴奋性自突触的改进FHN模型在g = 0.02和τ = 3.75时的新放电模式及其快慢变量分离 (a) 周期8簇(蓝色点线)在兴奋性自突触电流(上黑色实线)作用下诱导出新的放电模式(下黑色实线); (b)自突触的作用下新模式(►到■时段)在相平面(w, V )的投影, 轨线在相位●从阈上极限环(红色虚线)跃迁到阈下极限环(洋红色虚线); (c) 新放电模式(►到■时段) 在相平面(u, V )的投影; (d) 图(c)与快子系统分岔图1(b)的叠加

    Figure 4.  A novel bursting pattern and the corresponding fast/slow variable dissection of the modified-FHN model with excitatory autapse when g = 0.02 and τ = 3.75: (a) The new bursting pattern (lower solid black line) induced by excitatory autaptic current (upper solid black line) acted on the period-8 bursting (dotted blue line); (b) projection of the new pattern (from ► to ■ in panel (a)) on phase plane (w, V ); at the phase ●, the trajectory of the new pattern (from ► to ■ in panel (a)) jumps into the subthreshold stable limit cycle (dashed magenta line) from suprathreshold stable limit cycle (dashed red line); (c) the projection of the trajectory of the novel bursting pattern (from ► to in panel (a)) on the plane (u, V ); (d) the panel (c) and the bifurcation of the fast subsystem Fig. 1(b) plotted in one figure.

    图 5  具有兴奋性自突触的改进FHN模型在g = 0.02和τ = 12.6时的新放电模式及其快慢变量分离 (a) 周期8簇(蓝色点线)在兴奋性自突触(上黑色实线)作用下诱导出新的放电模式(下黑色实线); (b) 自突触的作用下新模式(►到■时段)在相平面(w, V )的投影, 轨线在相位●从阈上极限环(红色虚线)跃迁到阈下极限环(洋红色虚线); (c) 新放电模式(►到■时段) 在相平面(u, V )的投影; (d) 图(c)与快子系统分岔图1(b)的叠加

    Figure 5.  A new bursting pattern and the corresponding fast/slow variable dissection of the modified-FHN model with excitatory autapse when g = 0.02 and τ = 12.6: (a) The new bursting pattern (lower solid black line) induced by excitatory autaptic current (upper solid black line) acted on the period-8 bursting (dotted blue line); (b) projection of the trajectory of the new pattern (from ► to ■ in panel (a)) on phase plane (w, V ); at the phase ●, the trajectory of the new pattern (from ► to ■ panel (a)) jumps into the subthreshold stable limit cycle (dashed magenta line) from suprathreshold stable limit cycle (dashed red line); (c) the projection of the trajectory of the novel bursting pattern (from ► to ■ in panel (a)) is plotted on the plane (u, V ); (d) the panel (c) and the bifurcation of the fast subsystem Fig. 1(b) plotted in one figure.

    图 6  具有兴奋性自突触的改进FHN模型在g = 0.02和τ = 20.65时的新放电模式及其快慢变量分离 (a) 周期8簇(蓝色点线)在兴奋性自突触(上黑色实线)作用下诱导出新的放电模式(下黑色实线); (b) 自突触的作用下新模式(►到■时段)在相平面(w, V )的投影, 轨线在相位●从阈上极限环(红色虚线)跃迁到阈下极限环(洋红色虚线); (c) 新放电模式(►到■时段) 在相平面(u, V )的投影; (d) 图(c)与快子系统分岔图1(b)的叠加

    Figure 6.  A new bursting pattern and the corresponding fast/slow variable dissection of the modified-FHN model with excitatory autapse when g = 0.02 and τ = 20.65: (a) The new bursting pattern (lower solid black line) is induced by excitatory autaptic current (upper solid black line) acted on the period-8 bursting (dotted blue line); (b) projection of the trajectory of the new pattern (from ► to ■ in panel (a)) on phase plane (w, V ); at the phase ●, the trajectory of the new pattern (from ► to ■ in panel (a)) jumps into the subthreshold stable limit cycle (dashed magenta line) from suprathreshold stable limit cycle (dashed red line); (c) the projection of the trajectory of the novel bursting pattern (from ► to ■ in panel (a)) is plotted on the plane (u, V ); (d) the panel (c) and the bifurcation of the fast subsystem Fig. 1(b) and plotted in one figure.

    图 7  具有兴奋性自突触的改进FHN模型在g = 0.02和τ = 70.6时的新放电模式及其快慢变量分离 (a) 周期8簇(蓝色点线)在兴奋性自突触(上黑色实线)作用下诱导出新的放电模式(下黑色实线); (b) 自突触的作用下新模式(图(a)中►到■时段)在相平面(w, V)的投影; 第1个兴奋脉冲作用在相位●1, 在放电峰上没有引起放电峰大的变化; 第2个兴奋脉冲作用在相位●2, 使本来应该产生的阈下振荡变成阈上放电; (c) 新放电模式在相平面(u, V)的投影; (d) 图(c)和原放电轨线(蓝虚线)及快子系统分岔图1(b)的叠加

    Figure 7.  A new bursting pattern and the corresponding fast/slow variable dissection of the modified-FHN model with excitatory autapse when g = 0.02 and τ = 70.6: (a) The new bursting pattern (lower solid black line) induced by excitatory autaptic current (upper solid black line) acted on the period-8 bursting (dotted blue line); (b) the projection of the trajectory of the new pattern (from ► to ■ in panel (a)) on phase plane (w, V) under the action of autapse; The nearly unchanged spike induced by the 1st excitatory autaptic current pulse acting on phase ●1 within the spike; The expected subthreshold oscillation changes to suprathreshold firing induced by the 2nd excitatory autaptic current pulse acting on phase ●2; (c) the projection of the trajectory of the novel bursting pattern is plotted on the plane (u, V); (d) the panel (c), original period-8 bursting (blue dotted line), and bifurcations of the fast subsystem Fig. 1(b) plotted in one figure.

    图 8  平均放电频率随不同参数增长的变化 (a) 固定g时随τ增长, 其中g = 0 (黑色实线), g = 0.02 (蓝色点线)和g = 0.07 (绿色星线); (b) 固定τ时随g的增长, 其中τ = 3 (蓝色实线), τ = 4 (绿色点线)和τ = 5 (红色点虚线); 黑色实线对应平均放电频率f0 = 0.0567

    Figure 8.  Changes of the average firing frequency with increasing different parameter values: (a) With increasing τ values when g is fixed at g = 0 (solid black line), g = 0.02 (dotted blue line), g = 0.07 (asterisk green line); (b) with increasing g when τ is fixed at τ = 3 (solid blue line), τ = 4 (dotted green line), and τ = 5 (dash-dot red line); the solid black line represents f0 = 0.0567.

    图 9  兴奋性自突触作用下的改进FHN模型的放电频率在平面(τ, g)上的分布 (a) 平均放电频率分布, 彩色代表频率高低; (b) 平均放电频率与f0 = 0.0567的差的分布, 其中黑色区域, 频率低于内在频率f0 = 0.0567, 白色区域, 频率高于内在频率f0 = 0.0567; 绿色、洋红色和蓝色实心圆点对应图4 (τ = 3.75, g = 0.02)、图5 (τ = 12.6, g = 0.02)和图6 (τ = 20.65, g = 0.02), 红色实心圆点对应图7 (τ = 70.6, g = 0.02)

    Figure 9.  Distribution of the average firing frequency on the (τ, g)-plane of the modified-FHN model with excitatory autapse. (a) The average firing frequency. Color scale represents the value of firing frequency. (b) The difference between the average firing frequency and f0 = 0.0567. Black area: average frequency is lower than f0 = 0.0567; white area: average frequency is higher than f0 = 0.0567. The green, magenta, and blue solid cycles correspond to Fig. 4 (τ = 3.75, g = 0.02), Fig. 5 (τ = 12.6, g = 0.02), and Fig. 6 (τ = 20.65, g = 0.02), and the red solid cycle corresponds to Fig. 7 (τ = 70.6, g = 0.02).

    表 1  本文与文献[21]的主要的差别(兴奋性自突触)

    Table 1.  Main differences between this paper and Ref. [21] (excitatory autapse).

    结果相同部分不同部分
    条件结果机制
    文献[21]放电个数降低Fold/Homoclinic簇无结论休止期跃迁到放电
    本文放电个数降低Homoclinic/Homoclinic簇频率降低放电跃迁到阈下振荡
    今后待研究其他典型类型的簇待研究
    DownLoad: CSV
  • [1]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270Google Scholar

    [2]

    Glass L 2001 Nature 410 277Google Scholar

    [3]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161Google Scholar

    [4]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113Google Scholar

    [5]

    Rinzel J, Lee Y S 1987 J. Math. Biol. 25 653Google Scholar

    [6]

    Del Negro C A, Hsiao C F, Chandler S H, Garfinkel A 1998 Biophys. J. 75 174Google Scholar

    [7]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171Google Scholar

    [8]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [9]

    Chay T R 1985 Physica D 16 233Google Scholar

    [10]

    Holden A V, Fan Y S 1992 Chaos, Solitons Fractals 2 221Google Scholar

    [11]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183Google Scholar

    [12]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [13]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [14]

    Lu B, Liu S Q, Liu X L, Jiang X F, Wang X H 2016 Int. J. Bifurcation Chaos 26 1650090Google Scholar

    [15]

    谢勇, 程建慧 2017 物理学报 66 090501Google Scholar

    Xie Y, Cheng J H 2017 Acta Phys. Sin. 66 090501Google Scholar

    [16]

    Dodla R, Rinzel J 2006 Phys. Rev. E 73 010903Google Scholar

    [17]

    Wu F Q, Gu H G, Li Y Y 2019 Commun. Nonlinear Sci. Numer. Simul. 79 104924Google Scholar

    [18]

    丁学利, 李玉叶 2016 物理学报 65 210502Google Scholar

    Ding X L, Li Y Y 2016 Acta Phys. Sin. 65 210502Google Scholar

    [19]

    Beiderbeck B, Myoga M H, Müller N, Callan A R, Friauf E, Grothe B, Pecka M 2018 Nat. Commun. 9 1771Google Scholar

    [20]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030Google Scholar

    [21]

    曹奔, 关利南, 古华光 2018 物理学报 67 240502Google Scholar

    Cao B, Guan L N, Gu H G 2018 Acta Phys. Sin. 67 240502Google Scholar

    [22]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166Google Scholar

    [23]

    Han F, Gu X C, Wang Z J, Fan H, Cao J F, Lu Q S 2018 Chaos 28 106324Google Scholar

    [24]

    Gu H G, Zhao Z G 2015 PLoS One 10 e0138593Google Scholar

    [25]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599Google Scholar

    [26]

    Uzuntarla M, Torres J J, Calim A, Barreto E 2019 Neural Networks 110 131Google Scholar

    [27]

    Guo D Q, Wu S D, Chen M M, Matjaž Perc, Zhang Y S, Ma J L, Xu P, Xia Yang, Yao D Z 2016 Sci. Rep. 6 26096Google Scholar

    [28]

    Wu S D, Zhang Y S, Cui Y, Li H, Wang J K, Guo L J, Xia Yang, Yao D Z, Xu P, Guo D Q 2019 Neural Networks 110 91Google Scholar

    [29]

    Loos H V D, Glaser E M 1972 Brain Res. 48 355Google Scholar

    [30]

    Bekkers J M 2003 Curr. Biol. 13 R433Google Scholar

    [31]

    Lübke J, Markram H, Frotscher M, Sakmann B 1996 J. Neurosci. 16 3209Google Scholar

    [32]

    Tamás G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352Google Scholar

    [33]

    Cobb S R, Halasy K, Vida I, Nyiri G, Tamás G, Buhl E H, Somogyi P 1997 Neurosci. 79 629Google Scholar

    [34]

    Bacci A, Huguenard J R 2006 Neuron 49 119Google Scholar

    [35]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479Google Scholar

    [36]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602Google Scholar

    [37]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64Google Scholar

    [38]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743Google Scholar

    [39]

    Lisman J E 1997 Trends Neurosci. 20 38Google Scholar

    [40]

    Yin L, Zheng R, Ke W, He Q, Zhang Y, Li J, Wang B, Mi Z, Long YS, Rasch MJ, Li T, Luan G, Shu Y 2018 Nat. Commun. 9 4890Google Scholar

    [41]

    Tikidji-Hamburyan R A, Martinez J J, White J A, Canavier C C 2015 J. Neurosci. 35 15682Google Scholar

    [42]

    Li Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907Google Scholar

    [43]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709Google Scholar

    [44]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001Google Scholar

    [45]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586Google Scholar

    [46]

    Yang X L, Yu Y H, Sun Z K 2017 Chaos 27 083117Google Scholar

    [47]

    Qin H X, Ma J, Wa ng, C N, Wu Y 2014 PLoS One 9 e100849Google Scholar

    [48]

    Wu Y N, Gong Y B, Wang Q 2015 Chaos 25 043113Google Scholar

    [49]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538Google Scholar

    [50]

    Yilmaz E, Ozer M, Baysal V, Perc M 2016 Sci. Rep. 6 30914Google Scholar

    [51]

    Li Y Y, Gu H G, Ding X L 2019 Nonlinear Dyn. 97 2091Google Scholar

    [52]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549Google Scholar

    [53]

    Yao C G, He Z W, Nakano T, Qian Y, Shuai J W 2019 Nonlinear Dyn. 97 1425Google Scholar

    [54]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [55]

    Yamamoto A, Ichikawa M 2012 Phys. Rev. E 86 061905Google Scholar

    [56]

    Fitzhugh R 1955 Bull. Math. Biophys. 17 257Google Scholar

    [57]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [58]

    Jia Y B, Lu B, Gu H G 2019 Int. J. Mod. Phys. B 33 1950242Google Scholar

    [59]

    Yamakou M E, Tran T D, Duc L H 2019 J. Math. Biol. 79 509Google Scholar

    [60]

    Che Y Q, Geng L H, Han C X, Cui S G, Wang J 2012 Chaos 22 1349Google Scholar

    [61]

    Blumenthal N B 2012 Nonlinearity 25 2303Google Scholar

    [62]

    Mischler S, Quiñinao C, Touboul J 2016 Commun. Math. Phys. 342 1001Google Scholar

    [63]

    Kosmidis E K, Pakdaman K 2003 J. Comput. Neurosci. 14 5Google Scholar

    [64]

    Borowski P, Kuske R, Li Y X, Cabrera J L 2010 Chaos 20 043117Google Scholar

    [65]

    Cockburn B, Shu C W 1989 Math. Comput. 52 411Google Scholar

    [66]

    Dhooge A, Govaerts W, Kuznetsov Y A 2003 ACM T. Math. Software 29 141Google Scholar

  • [1] Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye. Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model. Acta Physica Sinica, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [2] Jiang Yi-Lan, Lu Bo, Zhang Wan-Qin, Gu Hua-Guang. Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism. Acta Physica Sinica, 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [3] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [4] Cao Ben,  Guan Li-Nan,  Gu Hua-Guang. Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Physica Sinica, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [5] Ding Xue-Li, Li Yu-Ye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica Sinica, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [6] Han Min, Zhang Ya-Mei, Zhang Meng. Outer synchronization analysis of two time-varying networks with double delays based on pinning control. Acta Physica Sinica, 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [7] Peng Xing-Zhao, Yao Hong, Du Jun, Ding Chao, Zhang Zhi-Hao. Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model. Acta Physica Sinica, 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [8] Li Xiao-Jing, Chen Xuan-Qing, Yan Jing. Hopf bifurcation and the problem of periodic solutions in a recharge-discharge oscillator model for El Niño and southern oscillation with time delay. Acta Physica Sinica, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [9] Hu Wen, Zhao Guang-Hao, Zhang Gong, Zhang Jing-Qiao, Liu Xian-Long. Stabilities and bifurcations of sine dynamic equations on time scale. Acta Physica Sinica, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [10] Xu Chang-Jin. Bifurcation analysis for a delayed sea-air oscillator coupling model for the ENSO. Acta Physica Sinica, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [11] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [12] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [13] Zhang Li-Ping, Xu Min, Wang Hui-Nan. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [14] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [15] Wu Ran-Chao. Synchronization of delayed discrete-time neural networks. Acta Physica Sinica, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [16] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [17] Ma Xi-Kui, Yang Mei, Zou Jian-Long, Wang Ling-Tao. Study of complex behavior in a time-delayed van der Pol’s electromagnetic system (Ⅰ)——The phenomena of bifurcations and chaos. Acta Physica Sinica, 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] Wang Zhan-Shan, Zhang Hua-Guang. The role of inhibitory neuron in a delayed neural network. Acta Physica Sinica, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [19] Zhang Qiang, Gao Lin, Wang Chao, Yuan Tao, Xu Jin. Study of the dynamics of a first-order cellular neural networks with delay. Acta Physica Sinica, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
    [20] Zhang Qiang, Gao Lin, Wang Chao, Xu Jin. Global stability of bidirectional associative memory neural networks with dela ys. Acta Physica Sinica, 2003, 52(7): 1600-1605. doi: 10.7498/aps.52.1600
Metrics
  • Abstract views:  10218
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2019
  • Accepted Date:  26 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回