Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect

Cao Ben Guan Li-Nan Gu Hua-Guang

Citation:

Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect

Cao Ben, Guan Li-Nan, Gu Hua-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nonlinear dynamics is identified to play very important roles in identifying the complex phenomenon, dynamical mechanism, and physiological functions of neural electronic activities. In the present paper, a novel viewpoint that the excitatory stimulus cannot enhance but reduce the number of the spikes within a burst, the novel viewpoint which is different from the traditional viewpoint, is proposed and is explained with the nonlinear dynamics. When the impulse current or the autaptic current with suitable strength is used in the suitable phase within the quiescent state of the bursting pattern of the Rulkov model, a novel firing pattern with reduced number of spikes within a burst is evoked. The earlier the application phase of the current within the quiescent state, the higher the threshold of the current strength to evoke the novel firing pattern is and the less the number of the spikes within a burst of the novel firing pattern. Moreover, such a novel phenomenon can be explained by the intrinsic nonlinear dynamics of the bursting combined with the characteristics of the current. The nonlinear behaviors of the fast subsystem of the Rulkov model are acquired by the fast and slow variable dissection method, respectively. For the fast subsystem, there exist a stable node with lower membrane potential, a stable limit cycle with higher membrane potential, a saddle serving as the border between the stable node and limit cycle, a saddle-node bifurcation, and a homoclinic orbit bifurcation. When external simulation is not received, the bursting pattern of the Rulkov model exhibits behavior alternating between the spikes corresponding to the limit cycle of the fast subsystem and quiescent state of the fast subsystem, which is located within the parameter region between the saddle-node bifurcation point and the homoclinic orbit bifurcation point of the fast subsystem. The spikes begin with the saddle-node bifurcation and end with the homoclinic orbit bifurcation. As the bifurcation parameter turns close to the homoclinic orbit bifurcation, the disturbation or stimulus that can induce the transition from the quiescent state to the spikes becomes strong. Therefore, as the application phase of the current within the quiescent state becomes earlier, the strength threshold of the current that can induce the transition from the quiescent state to the spikes becomes stronger, and the initial phase of the spikes becomes closer to the homoclinic orbit bifurcation, which leads the parameter region of the spikes to become shorter and then leads the number of spikes within a burst to turn less. It is the dynamical mechanism of the decrease of the spike number induced by the excitatory currents. The results enrich the nonlinear phenomenon and dynamical mechanism, present a novel viewpoint for the excitatory effect, and provide a new approach to modulating the neural bursting patterns.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872276, 1157222511372224)
    [1]

    Glass L 2001 Nature 410 277

    [2]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [3]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [4]

    Braun H A, Schwabedal J, Dewald M, Finke C, Postnova S, Huber M T, Wollweber B, Schneider H, Hirsch M C, Voigt K, Feudel U, Moss F 2011 Chaos 21 047509

    [5]

    Gu H G, Pan B B 2015 Nonlinear Dyn. 81 2107

    [6]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113

    [7]

    Wang X J, Rinzel J 1992 Neural Comput. 4 84

    [8]

    Wang X J, Rinzel J 1993 Neuroscience 53 899

    [9]

    van V C, Abbott L F, Bard E G 1994 J. Comput. Neurosci. 1 313

    [10]

    Cobb S R, Buhl E H, Halasy K, Paulsen O, Somogyi P 1995 Nature 378 75

    [11]

    Bose A, Kunec S 2001 Neurocomputing 38 505

    [12]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166

    [13]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [14]

    Gu H G, Zhao Z G 2015 PloS One 10 e0138593

    [15]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599

    [16]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549

    [17]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030

    [18]

    Tamas G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [19]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [20]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [21]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64

    [24]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743

    [25]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PloS One 9 e100849

    [26]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. Astron. 57 1918

    [27]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3242

    [28]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [29]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001

    [30]

    Guo D Q, Wu S D, Chen M M, Perc M, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y, Yao D Z 2016 Sci. Rep. 6 14

    [31]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [32]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [33]

    Gong Y, Wang B, Xie H 2016 Biosystems 150 132

    [34]

    Yang X, Yu Y, Sun Z 2017 Chaos 27 083117

    [35]

    Lisman J E 1997 Trends Neurosci. 20 38

    [36]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161

    [37]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [38]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [39]

    Rinzel J 1987 Lecture Notes in Biomathematics (Berlin: Springer-Verlag) p267

    [40]

    Buschle L R, Kurz F T, Kampf T, Wagner W L, Dueer J, Stiller W, Konietzke P, Wünnemann F, Mall M A, Wielpütz M O, Schlemmer H P, Ziener C H 2017 Phys. Rev. E 95 022415

    [41]

    Tsutome H, Yuichi H, Takao O, Masahiro T 2009 Phys. Rev. E 80 051921

    [42]

    Guo D Q 2011 Cogn. Neurodyn. 5 293

    [43]

    Chen F, Xia L, Li C G 2012 Chin. Phys. Lett. 29 070501

    [44]

    Guo D Q, Wang Q Y, Perc M 2012 Phys. Rev. E 85 061905

    [45]

    Wang Q Y, Murks A, Perc M, Lu Q S 2011 Chin. Phys. B 20 040504

  • [1]

    Glass L 2001 Nature 410 277

    [2]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171

    [3]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [4]

    Braun H A, Schwabedal J, Dewald M, Finke C, Postnova S, Huber M T, Wollweber B, Schneider H, Hirsch M C, Voigt K, Feudel U, Moss F 2011 Chaos 21 047509

    [5]

    Gu H G, Pan B B 2015 Nonlinear Dyn. 81 2107

    [6]

    Jia B, Gu H G 2017 Int. J. Bifurcation Chaos 27 1750113

    [7]

    Wang X J, Rinzel J 1992 Neural Comput. 4 84

    [8]

    Wang X J, Rinzel J 1993 Neuroscience 53 899

    [9]

    van V C, Abbott L F, Bard E G 1994 J. Comput. Neurosci. 1 313

    [10]

    Cobb S R, Buhl E H, Halasy K, Paulsen O, Somogyi P 1995 Nature 378 75

    [11]

    Bose A, Kunec S 2001 Neurocomputing 38 505

    [12]

    Elson R C, Selverston A I, Abarbanel H D I, Rabinovich M 2002 J. Neurophysiol. 88 1166

    [13]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [14]

    Gu H G, Zhao Z G 2015 PloS One 10 e0138593

    [15]

    Jia B, Wu Y C, He D, Guo B H, Xue L 2018 Nonlinear Dyn. 93 1599

    [16]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549

    [17]

    Jia B 2018 Int. J. Bifurcation Chaos 28 1850030

    [18]

    Tamas G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [19]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [20]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [21]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Deleuze C, Pazienti A, Bacci A 2014 Curr. Opin. Neurobiol. 26 64

    [24]

    Straiker A, Dvorakova M, Zimmowitch A, Mackie K 2018 Mol. Pharmacol. 94 743

    [25]

    Qin H X, Ma J, Wang C N, Wu Y 2014 PloS One 9 e100849

    [26]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. Astron. 57 1918

    [27]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3242

    [28]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [29]

    Guo D Q, Chen M M, Perc M, Wu S D, Xia C, Zhang Y S, Xu P, Xia Y, Yao D Z 2016 Europhys. Lett. 114 30001

    [30]

    Guo D Q, Wu S D, Chen M M, Perc M, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y, Yao D Z 2016 Sci. Rep. 6 14

    [31]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [32]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [33]

    Gong Y, Wang B, Xie H 2016 Biosystems 150 132

    [34]

    Yang X, Yu Y, Sun Z 2017 Chaos 27 083117

    [35]

    Lisman J E 1997 Trends Neurosci. 20 38

    [36]

    Izhikevich E M, Desai N S, Walcott E C, Hoppensteadt F C 2003 Trends Neurosci. 26 161

    [37]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [38]

    Rulkov N F 2001 Phys. Rev. Lett. 86 183

    [39]

    Rinzel J 1987 Lecture Notes in Biomathematics (Berlin: Springer-Verlag) p267

    [40]

    Buschle L R, Kurz F T, Kampf T, Wagner W L, Dueer J, Stiller W, Konietzke P, Wünnemann F, Mall M A, Wielpütz M O, Schlemmer H P, Ziener C H 2017 Phys. Rev. E 95 022415

    [41]

    Tsutome H, Yuichi H, Takao O, Masahiro T 2009 Phys. Rev. E 80 051921

    [42]

    Guo D Q 2011 Cogn. Neurodyn. 5 293

    [43]

    Chen F, Xia L, Li C G 2012 Chin. Phys. Lett. 29 070501

    [44]

    Guo D Q, Wang Q Y, Perc M 2012 Phys. Rev. E 85 061905

    [45]

    Wang Q Y, Murks A, Perc M, Lu Q S 2011 Chin. Phys. B 20 040504

  • [1] Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye. Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model. Acta Physica Sinica, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [2] Jiang Yi-Lan, Lu Bo, Zhang Wan-Qin, Gu Hua-Guang. Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism. Acta Physica Sinica, 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [3] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [4] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [5] Ding Xue-Li, Li Yu-Ye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica Sinica, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [6] Han Min, Zhang Ya-Mei, Zhang Meng. Outer synchronization analysis of two time-varying networks with double delays based on pinning control. Acta Physica Sinica, 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [7] Peng Xing-Zhao, Yao Hong, Du Jun, Ding Chao, Zhang Zhi-Hao. Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model. Acta Physica Sinica, 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [8] Li Xiao-Jing, Chen Xuan-Qing, Yan Jing. Hopf bifurcation and the problem of periodic solutions in a recharge-discharge oscillator model for El Niño and southern oscillation with time delay. Acta Physica Sinica, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [9] Hu Wen, Zhao Guang-Hao, Zhang Gong, Zhang Jing-Qiao, Liu Xian-Long. Stabilities and bifurcations of sine dynamic equations on time scale. Acta Physica Sinica, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [10] Xu Chang-Jin. Bifurcation analysis for a delayed sea-air oscillator coupling model for the ENSO. Acta Physica Sinica, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [11] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [12] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [13] Zhang Li-Ping, Xu Min, Wang Hui-Nan. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [14] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [15] Wu Ran-Chao. Synchronization of delayed discrete-time neural networks. Acta Physica Sinica, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [16] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [17] Ma Xi-Kui, Yang Mei, Zou Jian-Long, Wang Ling-Tao. Study of complex behavior in a time-delayed van der Pol’s electromagnetic system (Ⅰ)——The phenomena of bifurcations and chaos. Acta Physica Sinica, 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] Wang Zhan-Shan, Zhang Hua-Guang. The role of inhibitory neuron in a delayed neural network. Acta Physica Sinica, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [19] Zhang Qiang, Gao Lin, Wang Chao, Xu Jin. Global stability of bidirectional associative memory neural networks with dela ys. Acta Physica Sinica, 2003, 52(7): 1600-1605. doi: 10.7498/aps.52.1600
    [20] Zhang Qiang, Gao Lin, Wang Chao, Yuan Tao, Xu Jin. Study of the dynamics of a first-order cellular neural networks with delay. Acta Physica Sinica, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
Metrics
  • Abstract views:  7132
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2018
  • Accepted Date:  12 November 2018
  • Published Online:  20 December 2019

/

返回文章
返回