Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray source with quasi-monochromatic parallel beam

Wang Rui-Rong An Hong-Hai Xiong Jun Xie Zhi-Yong Wang Wei

Citation:

X-ray source with quasi-monochromatic parallel beam

Wang Rui-Rong, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Wang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In inertial confined fusion experiments, an excellent-performance and high-efficiency X-ray source plays an important role in X-ray radiography schemes. Indeed, it can be used in a variety of X-ray experimental techniques. The mono-chromaticity, flux intensity, degree of collimation (the radiation can be transported long distances without loss), and spot size of the X-ray source affect the quality of imaging. Ray-tracing simulations, which are validated by experimental results, demonstrate that high-intensity collimated X-ray beams can be produced from an isotropic X-ray source. Therefore, a method of improving the performance of an X-ray source from a laser-produced plasma is presented. A spherically bent crystal is used to collimate mono-chromatic X-rays emitted from a laser-produced plasma. Here we design a spherically bent crystal spectrometer system for collimating the laser-produced X-rays. The system performance is experimentally tested at the Shenguang Ⅱ (SGⅡ) laser facility located in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. The beam divergence is measured by using a metal grid placed downstream from the crystal, the metal grid that possesses wires with 60 μm in diameter and 127 μm in period. An imaging plate (IP) is placed at various distances downstream from grid. The quality of the generated beam is monitored by measuring the dimensions of the grid image formed by the beam on IP. While the narrow range of wavelength is measured with a spherically bent crystal spectrometer. Experimental results show that the spherically bent crystal spectrometer system can produce quasi-monochromatic (10-3 < △ λ/λ <10-2) X-ray beams with a high degree of collimation (less than 2 mrad divergence), uniform spot size (~500 μm), and a relative tenability in the wide spectral range. The influences of various experimental parameters on the quality of beam collimation are evaluated in two ways. They can be investigated in test experiments by representing the beam divergence distribution as a function of Bragg angle. In another study of the effect of the aberrations, when the incident beam on the spherically bent crystal is not normal, the beam is less collimated in the tangential plane, and out of collimation in the sagittal plane. Following the ray-tracing method, we analyze the diffracted beam divergence produced by the astigmatic aberration. The qualitative conclusion is that the good agreement with the experimental results is obtained. By fully utilizing limited Bragg angle range, the spherically bent crystal spectrometer system can realize collimated diffracted X-ray beams with divergence of less than 1 mrad by using a laser-produced plasma X-ray source under the appropriately experimental parameters.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575168).
    [1]

    Zhao Z Q, He W H, Wang J, Hao Y D, Cao L F, Gu Y Q, Zhang B H 2013 Chin. Phys. B 22 104202

    [2]

    Lang J C, Srajer G, Wang J, Lee P L 1999 Rev. Sci. Instrum. 70 4457

    [3]

    Babacar D, Vu Thien B 2012 Rev. Sci. Instrum. 83 094704

    [4]

    Li F Z, Liu Z G, Sun T X 2016 Rev. Sci. Instrum. 87 093106

    [5]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181

    [6]

    Chen J P, Wang J Y, Zou J, Lü H Y, Hu X D, Xu Y 2017 Nucl. Instrum. Meth. A 870 19

    [7]

    Wilklns S W, Stevenson A W 1988 Nucl. Instrum. Meth. A 269 321

    [8]

    Protopopov V, Shishkov V A, Kalnov V A 2000 Rev. Sci. Instrum. 71 4380

    [9]

    Wilkins S B, Spencer P D, Hatton P D, Tanner B K, Lafford T A, Spence J, Loxley N 2002 Rev. Sci. Instrum. 73 2666

    [10]

    Korotkikh E M 2006 X-Ray Spectrom. 35 116

    [11]

    Hray J, Oberta P 2008 Rev. Sci. Instrum. 79 073105

    [12]

    Nishikino M H, Sato K S, Hasegawa N, Ishino M H, Ohshima S S, Okano Y, Kawachi T Y, Numasaki H, Teshima T, Nishimura H 2010 Rev. Sci. Instrum. 81 026107

    [13]

    Sanchez del Rio M, Fraenkel M, Zigler A, Faenov A Ya, Pikuz T A 1999 Rev. Sci. Instrum. 70 1614

    [14]

    Gerritsen H C, van Brug H, Bijkerk F, van der Wiel M J 1986 J. Appl. Phys. 59 2337

  • [1]

    Zhao Z Q, He W H, Wang J, Hao Y D, Cao L F, Gu Y Q, Zhang B H 2013 Chin. Phys. B 22 104202

    [2]

    Lang J C, Srajer G, Wang J, Lee P L 1999 Rev. Sci. Instrum. 70 4457

    [3]

    Babacar D, Vu Thien B 2012 Rev. Sci. Instrum. 83 094704

    [4]

    Li F Z, Liu Z G, Sun T X 2016 Rev. Sci. Instrum. 87 093106

    [5]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181

    [6]

    Chen J P, Wang J Y, Zou J, Lü H Y, Hu X D, Xu Y 2017 Nucl. Instrum. Meth. A 870 19

    [7]

    Wilklns S W, Stevenson A W 1988 Nucl. Instrum. Meth. A 269 321

    [8]

    Protopopov V, Shishkov V A, Kalnov V A 2000 Rev. Sci. Instrum. 71 4380

    [9]

    Wilkins S B, Spencer P D, Hatton P D, Tanner B K, Lafford T A, Spence J, Loxley N 2002 Rev. Sci. Instrum. 73 2666

    [10]

    Korotkikh E M 2006 X-Ray Spectrom. 35 116

    [11]

    Hray J, Oberta P 2008 Rev. Sci. Instrum. 79 073105

    [12]

    Nishikino M H, Sato K S, Hasegawa N, Ishino M H, Ohshima S S, Okano Y, Kawachi T Y, Numasaki H, Teshima T, Nishimura H 2010 Rev. Sci. Instrum. 81 026107

    [13]

    Sanchez del Rio M, Fraenkel M, Zigler A, Faenov A Ya, Pikuz T A 1999 Rev. Sci. Instrum. 70 1614

    [14]

    Gerritsen H C, van Brug H, Bijkerk F, van der Wiel M J 1986 J. Appl. Phys. 59 2337

  • [1] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [3] Wang Yan, Liu Xin, Huang Wan-Xia, Yi Ming-Hao, Guo Jin-Chuan, Zhu Pei-Ping. . Acta Physica Sinica, 2017, 66(8): 089901. doi: 10.7498/aps.66.089901
    [4] Mou Huan, Li Bao-Quan, Cao Yang. Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [5] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [6] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [7] Huang Kai, Yan Wen-Chao, Li Ming-Hua, Tao Meng-Ze, Chen Yan-Ping, Chen Jie, Yuan Xiao-Hui, Zhao Jia-Rui, Ma Yong, Li Da-Zhang, Gao Jie, Chen Li-Ming, Zhang Jie. X-ray source produced by laser solid target interaction at kHz repetition rate. Acta Physica Sinica, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [8] Han Kui, Wang Juan-Juan, Zhou Fei, Shen Xiao-Peng, Shen Yi-Feng, Wu Yu-Xi, Tang Gang. Goos-Hänchen shift of self-collimated beam in Kretschmann configuration based on photonic crystal. Acta Physica Sinica, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [9] Deng Ning-Qin, Zhao Bao-Sheng, Sheng Li-Zhi, Yan Qiu, Yang Hao, Liu Duo. A space audio cummunication system based on X-ray. Acta Physica Sinica, 2013, 62(6): 060705. doi: 10.7498/aps.62.060705
    [10] Wang Jian, Zhao Zong-Qing, Cai Da-Feng, Huang Wen-Zhong, He Ying-Ling, Gu Yu-Qiu. Penumbral imaging of Kα radiation source. Acta Physica Sinica, 2009, 58(10): 7074-7078. doi: 10.7498/aps.58.7074
    [11] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [12] Shen Xiao-Peng, Han Kui, Li Hai-Peng, Shen Yi-Feng, Wang Zi-Yu. Polarization beam splitter for self-collimated beams in photonic crystals. Acta Physica Sinica, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [13] LI CHAO-RONG, WU LI-JUN, CHEN WAN-CHUN. STUDIES OF THE IMPURITY EFFECTS ON CRYSTALLINE QUALITY BY HIGH-RESOLUTION X-RAY DIFFRACTION. Acta Physica Sinica, 2001, 50(11): 2185-2191. doi: 10.7498/aps.50.2185
    [14] CUI MING-QI, MIAO JIAN-WEI, WANG JUN, CUI CHONG-WU, LI GANG, ZHU PEI-PING. THE STUDY OF ENERGY RESOLUTION FOR SOFT X-RAY MULTILAYER MONOCHROMATER. Acta Physica Sinica, 1997, 46(5): 1015-1021. doi: 10.7498/aps.46.1015
    [15] SUN KE-XU, YI RONG-QING, YANG JIA-MIN, WANG HONG-BIN, MA HONG-LIANG, CHEN ZHENG-LIN, HUANG TIAN-XUAN, CUI YAN-LI, ZHENG ZHI-JIAN, TANG DAO-YUAN, DING YONG-KUN, WEN SHU-HUAI, JIANG WEN-MIAN, ZHAO YONG-KUAN, CUI MING-QI, LI GANG, CUI CONG-WU, TANG E-SHENG. CALIBRASION OF THE ENERGY RESPONSE FOR THE SOFT X-RAY DETECTIONS ELEMENTS WITH THE BEIJING- SYNCHROTRON RADIATION FACILITY. Acta Physica Sinica, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [16] ZHANG JIAN-ZHONG, CAO YAN-NI. SIMULATION STUDY OF DIVERGENT BEAM X-RAY DIFFRACTION BY CRYSTALS. Acta Physica Sinica, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [17] JIANG XIAO-MING, JIANG ZUI-MIN, LIU WEN-HAN, WU ZI-QIN. THE EFFECT OF ANNEALING ON THE X-RAY DIFFRACTION OF W/C PERIODIC MULTILAYERS. Acta Physica Sinica, 1988, 37(11): 1893-1899. doi: 10.7498/aps.37.1893
    [18] GUO CHANG-LIN. DIFFRACTION GEOMETRY OF MONOCHROMATIC X RAY QUADRUPLE FOCUSING CAMERA. Acta Physica Sinica, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] XU JI-AN, HU JING-ZHU. X-RAY DIFFRACTION UNDER HIGH PRESSURE. Acta Physica Sinica, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [20] WU TE-CHAN, WANG JEN-HUI. THE THERMAL DIFFUSE X-RAY SCATTERING AND ELASTIC CONSTANTS OF ZINC. Acta Physica Sinica, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
Metrics
  • Abstract views:  6614
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2018
  • Accepted Date:  18 November 2018
  • Published Online:  20 December 2019

/

返回文章
返回