-
Elliptically polarized attosecond pulse has significant applications to study the ultrafast chiral dynamics and X-ray magnetic circular dichroism (XMCD) due to its ultrashort time-scale (attosecond) and elliptical polarization characteristics. In our study, the interaction between the inhomogeneous linear laser field and the Ne atoms is simulated by numerically solving the time-dependent Schrödinger equation. Specifically, the influences of the inhomogeneity of the driving field and the orbital angular momentum (OAM) of the initial orbital on high-order harmonics (HH) and attosecond pulses are revealed. HH generated by the linear laser fields with different inhomogeneity are calculated. The results indicate that the inhomogeneity significantly influences the smoothness and spectral broadening of the harmonic spectra, consequently affecting the properties of the attosecond pulses. Moreover, our findings also reveal that the OAM of the initial orbital plays a significant role in the polarization state of the attosecond pulses. When the OAM is zero (e.g., 1s orbital), the radiated attosecond pulses are linearly polarized, whereas non-zero OAM (e.g., current carrying state 2p- orbital) leads to elliptically polarized emission. Thiz study provides a theoretical foundation for generating and controlling elliptically polarized isolated attosecond pulses using inhomogeneous linearly polarized laser fields, offering new possibilities for ultrafast spectroscopy and magnetic material characterization.
-
Keywords:
- High order harmonic /
- Elliptically polarized isolated attosecond pulse /
- Current carrying state /
- Inhomogeneous laser field
-
[1] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72(2) 545
[2] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689
[3] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506
[4] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri D S, Nisoli M 2006 Science 314 443
[5] Seres J, Yakovlev S V, Seres E, Streli CH, Wobrauschek P, Spielmann CH, Krausz F 2007 Nat. Phys. 3 878
[6] Goulielmakis E, Schultze M, Hofstetter M 2008 Science 320 1614
[7] Mairesse Y, Bohan D A, Frasinski J K, Dinu C L, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller G H, Agostini P, Salières P 2003 Science 302 1540
[8] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186
[9] Kukk E, Myllynen H, Nagaya K, Wada S, Bozek D J, Takanashi T, You D Niozu A, Kooser K, Gaumnitz T, Pelimanni E, Berholts M, Granroth S, Yokono N, Fukuzawa H, Miron C, Ueda K 2019 Phys. Rev. A. 99 023411
[10] Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov Y M, Smirnova O 2010 Phys. Rev. Lett. 104 22901
[11] Chen Z J, Wang Y, Morishita T 2019 Phys. Rev. A 100 023405
[12] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[13] Ferré A, Handschin C, Dumergue M, Burgy F, Comby A, Descamps D, Fabre B, Garcia A G, Géneaux R, Merceron L, Mével E, Nahon L, Petit S, Pons B, Staedter D, Weber S, Ruchon T, Blanchet V, MairesseY 2014 Nat. Photonics 9 93
[14] Kfir O, Grychto P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw M J, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat.Photonics 9 99
[15] Sinev I, Richter U F, Toftul I, Glebov N, Koshelev K, Hwang Y, Lancaster G D, Kivshar Y, Altug H 2025 Nat. Commun. 16 6091
[16] Valev K V, Engheta N, Pendry B J 2023 Adv. Mater. 35 e2306073
[17] Shao R, Zhai C, Zhang Y, Sun N, Cao W, Lan P, Lu P 2020 Opt. Express 28 15874
[18] Lambert G, Vodungbo B, Gautier J, Mahieu B, Malka V, Sebban S, Zeitoun P, Luning J, Perron J, Andreev A, Stremoukhov S, Ardana-Lamas F, Dax A, Hauri P C, Sardinha A, Fajardo M 2015 Nat. Commun. 6 6167
[19] Yuan J K, Bandrauk D A 2013 Phys. Rev. Lett. 110 023003
[20] Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543
[21] Medišauskas L, Wragg J, van der Hart H, Yu. Ivanov M 2015 Phys. Rev. Lett. 115 153001
[22] Zhou X, Lock R, Wagner N, Li W, Kapteyn C H, Murnane M M 2009 Phys. Rev. Lett. 102 073902
[23] Niikura H, Dudovich N, Villeneuve M D, Corkum B P 2010 Phys Rev. Lett. 105 053003
[24] Le A, Lucchese R R, Lin D C 2010 Phys. Rev. A 82 023814
[25] Xie X, Scrinzi A, Wickenhauser M, Baltuška A, Barth I, Kitzler M 2008 Phys. Rev. Lett. 101 033901
[26] Kfir O, Grychtol P, Turgut E 2015 Nat. Photonics 9 99
[27] Weber A, Böning B, Minneker B, Fritzsche S 2021 Phys. Rev. A 104 063118
[28] Liu X, Zhu X, Li L, Li Y, Zhang Q, Lan P, Lu P 2016 Phys. Rev. A 94 033410
[29] Miloševic B D 2015 Phys. Rev. A 92 043827
[30] Mauger F, Bandrauk D A, Uzer T 2016 J. Phys. B 49 10LT01
[31] Hickstein D D, Dollar J F, Grychtol P, Ellis L J, Knut R, Hernández-García C, Zusin D, Gentry C, Shaw M J, Fan T, Dorney M K, Becker A, Jaron´-Becker A, Kapteyn C H, Murnane M M, Durfee G C 2015 Nat. Photonics 9 743
[32] Dorney M K, Ellis L J, Hernández-García C, Hickstein D D, Mancuso A C, Brooks N, Fan T, Fan G, Zusin D, Gentry C, Grychtol P, Kapteyn C H, Murnane M M 2017 Phys. Rev. Lett. 119 063201
[33] Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418
[34] Le A T, Lucchese R R, Lin C D 2010 Phys. Rev. A 82 023814
[35] Zhang X F, Zhu X S, Liu X, Wang F, Qin M Y, Liao Q, Lu P X 2020 Phys. Rev. A 102 033103
[36] Ou T, Wang F, Yuan H, Yang C, Song J, Liao Q 2025 Opt. Commun. 574 131183
[37] Mandal A, Singh P K 2023 Laser Phys. 33 015301
[38] Ammosov M V, Delone N B, Krainov V P, 1986 Sov. Phys. JETP 64 1191
[39] Ding Y, Wang K, Zhang X 2025 Opt. Laser Technol. 184 112561
[40] Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418.
[41] Luo J H 2014 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[42] Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q B, Lan P F, Lu P X 2017 Opt. Lett. 42 1027.
Metrics
- Abstract views: 424
- PDF Downloads: 7
- Cited By: 0