-
Transient absorption spectroscopy using soft X-ray coherent light sources as ultrafast probes holds significant promise for applications in chemistry, biology, and materials science. This article presents the design of a transient absorption apparatus based on tabletop soft X-ray light sources. A commercial femtosecond laser system (4.4mJ, 25fs, 800nm, 1kHz) drives an optical parametric amplifier, generating a 900μJ, 28fs, 1440nm short-wavelength infrared (SWIR) pulse. This SWIR pulse is spectrally broadened and temporally compressed into a few-cycle pulse (400μJ, 16.5fs, 1530nm) via a hollow-core fiber compressor. The few-cycle SWIR pulse then drives the generation of attosecond soft X-ray high-harmonic radiation, with the maximum photon energy extending into the water window region (>300eV). The spectral resolution of the soft X-ray spectrometer is determined to be 334meV at 243eV. The remaining 800nm pump pulse from the OPA system is combined with the high-harmonic soft X-ray probe using a hole mirror, forming a Mach-Zehnder interferometer with a time jitter of <10fs over one hour of data acquisition. This setup demonstrates the feasibility of performing time-resolved soft X-ray spectroscopy in a compact experimental configuration. Preliminary studies of transient absorption near the argon L-edge and carbon K-edge were conducted, establishing this system as a powerful tool for element-specific, time-resolved, and transition-channel-resolved investigations of electron dynamics.
-
Keywords:
- high order harmonics /
- soft X-ray /
- transient absorption /
- water window
-
[1] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010Nature 466 739
[2] Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014Science 346 1348
[3] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016Science 353 916
[4] Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Applied Surface Science 252 5512
[5] Zhang G P, Hübner W 2000Physical Review Letters 85 3025
[6] Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017Science 355 264
[7] Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020Scientific Reports 10 5773
[8] Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Scientific Reports 13 3059
[9] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018Phys. Rev. A 97 031407
[10] Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542
[11] Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021Phys. Rev. Res. 3 043222
[12] Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021Science 371 489
[13] Smith A D, Balˇciunas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020The Journal of Physical Chemistry Letters 111981
[14] Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016The Journal of Physical Chemistry Letters 7 465
[15] Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022Nature Communications 13 3414
[16] Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023Phys. Chem. Chem. Phys. 25 8497
[17] Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J Am Chem Soc 139 16576
[18] Bhattacherjee A, Leone S R 2018Accounts of Chemical Research 51 3203
[19] Scutelnic V, Tsuru S, Pxapai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021Nature Communications 12 5003
[20] Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024Optica 11 1320
[21] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madro˜nero J, Martxın F, Pfeifer T 2014Nature 516374
[22] Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016Nature Communications 7 11493
[23] Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009Proceedings of the National Academy of Sciences 106 10516
[24] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010Phys. Rev. Lett. 105 143002
[25] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020Optica 7 168
[26] Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014New Journal of Physics 16 113016
[27] Attar A R, Piticco L, Leone S R 2014The Journal of Chemical Physics 141 164308
[28] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017Nature Communications 8 186
Metrics
- Abstract views: 15
- PDF Downloads: 0
- Cited By: 0