Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Apparatus for transient absorption spectroscopy based on water-window high-order harmonic attosecond light sources

DENG Yimin ZHANG Yu LU Peixiang CAO Wei

Citation:

Apparatus for transient absorption spectroscopy based on water-window high-order harmonic attosecond light sources

DENG Yimin, ZHANG Yu, LU Peixiang, CAO Wei
cstr: 32037.14.aps.74.20250550
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Transient absorption spectroscopy using soft X-ray coherent light sources as ultrafast probes holds significant potential applications in chemistry, biology, and materials science. This article presents the design of a transient absorption apparatus based on desktop soft X-ray light sources. A commercial femtosecond laser system (4.4 mJ, 25 fs, 800 nm, 1 kHz) drives an optical parametric amplifier, generating a 900 μJ, 28 fs, 1440 nm short-wavelength infrared (SWIR) pulse. This SWIR pulse is spectrally broadened and temporally compressed into a few-cycle pulse (400 μJ, 16.5 fs, 1530 nm) by a hollow-core fiber compressor. Then, few-cycle SWIR pulse drives the generation of attosecond soft X-ray high-order harmonic radiation, with the maximum photon energy extending into the water window region (>300 eV). The spectral resolution of the soft X-ray spectrometer is determined to be 334 meV at 243 eV. The remaining 800 nm pump pulse from the OPA system is combined with the high-order harmonic soft X-ray probe by using a hole mirror, forming a Mach-Zehnder interferometer with a time jitter of less than 10 fs during the one-hour data acquisition. This setup demonstrates the feasibility of performing time-resolved soft X-ray spectroscopy in a compact experimental configuration. Preliminary studies of transient absorption near the argon L-edge and carbon K-edge are conducted, demonstrating that this system can be used as a powerful tool for element-specific, time-resolved, and transition-channel-resolved investigations of electron dynamics.
      Corresponding author: CAO Wei, weicao@hust.edu.cn
    • Funds: Project supported by the the National Key R&D Program of China (Grant Nos. 2023YFA1406800, 2024YFE0205800), the National Natural Science Foundation of China (Grant Nos. 12274158, 12021004), and the Open Fund Project of Hubei Key Laboratory of Optical Information and Pattern Recognition of Wuhan Institute of Technology, China (Grant No. 202304).
    [1]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [2]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [3]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [4]

    Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512Google Scholar

    [5]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [6]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [7]

    Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773Google Scholar

    [8]

    Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059Google Scholar

    [9]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [10]

    Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542Google Scholar

    [11]

    Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222Google Scholar

    [12]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [13]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [14]

    Smith A D, Balčiu̅nas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981Google Scholar

    [15]

    Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465Google Scholar

    [16]

    Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414Google Scholar

    [17]

    Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497Google Scholar

    [18]

    Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576Google Scholar

    [19]

    Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203Google Scholar

    [20]

    Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003Google Scholar

    [21]

    Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320Google Scholar

    [22]

    Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493Google Scholar

    [23]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516Google Scholar

    [24]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168Google Scholar

    [25]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

  • 图 1  利用少周期短波红外激光产生软X射线进行瞬态吸收实验光路示意图

    Figure 1.  Schematic of transient absorption experimental carried by soft X-ray generated by few-cycle infrared laser.

    图 2  少周期短波红外激光的产生光路示意图.

    Figure 2.  Schematic of few-cycle SWIR laser generation.

    图 3  经过空芯光纤系统展宽后的短波红外光谱

    Figure 3.  Spectrum of SWIR laser pulse after spectral broadening in hollow-core fiber.

    图 4  FROG脉宽测量结果 (a)测量得到的FROG trace; (b)重构得到的FROG trace; (c)重构得到的少周期短波红外光谱强度及相位; (d)重构得到的少周期短波红外时域结构

    Figure 4.  Results of FROG measurement: (a) Measured FROG trace; (b) reconstructed FROG trace; (c) reconstructed spectral amplitude and phase of the few-cycle SWIR laser pulse; (d) constructed temporal structure of the SWIR laser pulse.

    图 5  产生软X射线高次谐波的气体靶室截面图

    Figure 5.  Cross section view of the gas target for soft X-ray high harmonic generation.

    图 6  软X射线光谱仪

    Figure 6.  Home-built soft X-ray spectrometer.

    图 7  不同气体产生的软X射线高次谐波光谱 (a)氖气; (b)氦气

    Figure 7.  Soft X-ray high harmonic spectra from different gases: (a) Ne; (b) He.

    图 8  (a)氩气的二维静态吸收谱; (b)在氩的$\rm 2p_{2/3}^{-1}4s $吸收线附近对(a)进行空间积分后的吸收线型, 红色实线表示利用洛伦兹线型与高斯函数卷积的拟合结果, 结果表明该光谱仪分辨率约为344 meV

    Figure 8.  (a) Two-dimensional static absorption spectrum of Ar gas; (b) spatial integrated absorption spectrum in panel (a) near $\rm 2p_{2/3}^{-1}4s$ transition line of Ar (blue), red solid line represents the fitting by convoluting the Lorentz line shape with a Gaussian function, the fitting results indicate that the spectrometer resolution is approximately 334 meV.

    图 9  (a)合频信号光谱随延时的变化, 白色圆圈线为合频信号中心波长位置; (b)合频信号中心波长随延时的变化(蓝线), 黄线是对蓝线的线性拟合

    Figure 9.  (a) Sum-frequency generation spectrum as a function of delay, the white circles indicate the positions of central wavelength; (b) central wavelength of the sum-frequency generation as a function of delay (blue), yellow line represents the linear fitting of the blue line.

    图 10  3 h内相对延时的漂移曲线

    Figure 10.  Relative delay drift over 3 h.

    图 11  氩原子的瞬态吸收实验结果

    Figure 11.  Experimental results of transient absorption of helium atoms.

    图 12  吸收峰$\rm 2p_{2/3}^{-1}4s $ (a), $\rm 2p_{2/3}^{-1}5s/3d$ (b)和 $\rm 2p_{1/3}^{-1}5s/3d$ (c)的强度随延迟的变化, 其中蓝色实线为实验数据, 红线为高斯拟合结果

    Figure 12.  Intensity of the absorption peak $\rm 2p_{2/3}^{-1}4s $ (a), $\rm 2p_{2/3}^{-1}5s/3d$ (b) and $\rm 2p_{1/3}^{-1}5s/3d$ (c) as a function of delay. The solid blue lines are the measured results, and the red lines represent the Gaussian fitting.

    图 13  CO2的瞬态吸收实验结果

    Figure 13.  Experimental results of transient absorption of CO2.

  • [1]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [2]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [3]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [4]

    Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512Google Scholar

    [5]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [6]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [7]

    Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773Google Scholar

    [8]

    Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059Google Scholar

    [9]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [10]

    Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542Google Scholar

    [11]

    Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222Google Scholar

    [12]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [13]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [14]

    Smith A D, Balčiu̅nas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981Google Scholar

    [15]

    Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465Google Scholar

    [16]

    Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414Google Scholar

    [17]

    Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497Google Scholar

    [18]

    Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576Google Scholar

    [19]

    Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203Google Scholar

    [20]

    Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003Google Scholar

    [21]

    Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320Google Scholar

    [22]

    Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493Google Scholar

    [23]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516Google Scholar

    [24]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168Google Scholar

    [25]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [5] Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun. Extreme ultraviolet polarization vortex beam based on high harmonic generation. Acta Physica Sinica, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [7] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [8] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [9] Guan Zhong, Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Study of high-order harmonic generation in crystals exposed to laser fields. Acta Physica Sinica, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [10] Yu Zu-Qing, He Feng. Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption. Acta Physica Sinica, 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [11] Yu Chao, Sun Zhen-Rong, Guo Dong-Sheng. Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law. Acta Physica Sinica, 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] Chen Huo-Yao, Liu Zheng-Kun, Wang Qing-Bo, Yi Tao, Yang Guo-Hong, Hong Yi-Lin, Fu Shao-Jun. Effect of curve groove on the spectral resolution for soft X-ray holographic flat-field gratings. Acta Physica Sinica, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [13] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Analysis on the cutoff frequency of high order harmonic generation in the crystal. Acta Physica Sinica, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [14] Liu Zheng-Kun, Qiu Ke-Qiang, Chen Huo-Yao, Liu Ying, Xu Xiang-Dong, Fu Shao-Jun, Wang Chen, An Hong-Hai, Fang Zhi-Heng. Studies on soft X-ray shearing interferometry with double-frequency gratings. Acta Physica Sinica, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [15] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] Ma Tian-Peng, Hu Li-Qun, Chen Kai-Yun. Study of central plasma structure using soft X-ray signals. Acta Physica Sinica, 2009, 58(2): 1110-1114. doi: 10.7498/aps.58.1110
    [17] Yan Fen, Cui Ming-Qi, Chen Kai, Sun Li-Juan, Xi Shi-Bo, Zhou Ke-Jin, Zheng Lei, Zhao Yi-Dong, Wang Zhan-Shan, Zhu Jing-Tao, Zhang Zhong, Zhao Jia. Soft X-ray magmeto-optical Faraday rotation measurements with the multilayer polarizer. Acta Physica Sinica, 2008, 57(5): 2860-2865. doi: 10.7498/aps.57.2860
    [18] Wang Chen, Wang Wei, Wu Jiang, Dong Jia-Qin, Sun Jin-Ren, Wang Rui-Rong, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Huang Guan-Long, Lin Zun-Qi, Zhang G uo-Ping, Zhang Tan-Xin, Zheng Wu-Di. Experimental studies of Ni-like Ta x-ray laser. Acta Physica Sinica, 2004, 53(11): 3752-3755. doi: 10.7498/aps.53.3752
    [19] Wang Da-Wei, Liu Ting-Ting, Yang Hong, Jiang Hong-Bin, Gong Qi-Huang. . Acta Physica Sinica, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
Metrics
  • Abstract views:  648
  • PDF Downloads:  42
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2025
  • Accepted Date:  12 May 2025
  • Available Online:  17 May 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回