搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体莫尔晶格对相对论强激光的导引

黄容 祝昕哲 陈民

引用本文:
Citation:

等离子体莫尔晶格对相对论强激光的导引

黄容, 祝昕哲, 陈民

Optical Guiding of Relativistic Intense Lasers by Plasma Moiré Lattices

HUANG Rong, ZHU Xinzhe, CHEN Min
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 准周期莫尔晶格具有独特的平带结构,能够实现光子局域化和长距离光导引。然而,传统光子莫尔晶格仅能导引毫瓦级弱光。为实现强激光的高效导引,本文将莫尔晶格概念引入等离子体领域,提出等离子体莫尔晶格强光导引方案。通过理论计算,证明了等离子体莫尔晶格同样具有传播常数不随横向波数变化的平带,具备长距离光导引的理论基础。利用三维粒子模拟方法,我们研究了等离子体莫尔晶格对相对论强激光脉冲的导引特性。模拟结果表明,在给定参数下,该晶格能将不同初始尺寸的激光脉冲有效约束至相近的通道深度,实现长距离稳定传输。与常用的预制抛物型等离子体密度通道相比,等离子体莫尔晶格能显著抑制导引过程中因尾波场激发导致的激光红移现象,适用于导引大能量短脉冲和小能量长脉冲激光等多种情况。进一步研究表明,等离子体莫尔晶格同样适用于强太赫兹脉冲的长距离弱色散导引。本工作有望为强激光及强太赫兹脉冲的高效弱色散传输提供一种新的思路。
    Moiré lattices are photonic lattices featuring moiré patterns.Quasiperiodic photonic moiré lattices possess flat energy bands,enabling the localization of the beam and long-distance optical guiding.However,intense lasers alter the induced refractive index of photorefractive crystals,limiting milliwatt-level guiding in quasiperiodic moiré lattices based on such materials.To realize effcient optical guiding with long-distance and low-dispersion propagation,this study introduces the concept of moiré lattices into plasmas,leveraging the high damage threshold of plasmas,and proposes a plasma moiré lattice.
    Theoretical calculations were performed by approximating quasiperiodic moiré lattices with periodic ones constructed using specific adjacent angles and employing the finite difference method.It is demonstrated that plasma moiré lattices also exhibit flat energy bands where the propagation constant remains independent of the transverse wavenumber,providing a theoretical foundation for long-distance guiding.
    Three-dimensional particle-in-cell simulations were conducted to investigate the guiding characteristics of relativistic intense laser pulses (a0=1,corresponding to Ez =4 × 1012 V/m) in plasma moiré lattices.Under the given parameters,the lattice can effectively confine laser pulses of different initial spot sizes to a similar channel depth,enabling stable long-distance propagation over d=1000λ0.When the initial spot size exceeds the channel depth,part of the beam energy converges toward the center,leading to an increase in the peak intensity by a factor of two,while the other part is scattered,resulting in a decrease in total energy.
    Under conditions of matched average density,compared to conventional preformed parabolic plasma density channels,the plasma moiré lattice significantly suppresses laser redshift usually caused by wakefield excitation.For example,for a high-energy short pulse (W=25.4 mJ,τ0=15λ0) or a low-energy long pulse (W=2 mJ,τ0=30λ0),the redshift in the moiré lattice is markedly less than that in the parabolic channel after propagating d=800λ0,as stronger wakefield is excited in the latter.
    By scaling the moiré lattice up 75 times,the plasma moiré lattice can effectively guide intense terahertz pulses (center frequency f0=5 THz,λ0=60 µm,a0=0.45,W=24.7 mJ).During long-distance propagation up to 5ZR(Rayleigh length) in the moiré lattice,intense terahertz pulses experience negligible photon deceleration,maintain their original central frequency,and achieve low-dispersion transmission.
    The plasma moiré lattice provides a new approach for high-effciency,low-dispersion transmission of intense lasers and terahertz pulses.Potential experimental implementations could involve generating such lattices using two-beam interference with masks or dielectric barrier discharge methods,allowing tunable lattice constants for optimized guiding of diverse electromagnetic pulses.
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L 2018 Nature 556 80

    [3]

    Rosendo L M, Peñaranda F, Christensen J, San-Jose P 2020 Physical Review Letters 125 214301

    [4]

    Dorrell W, Pirie H, Gardezi S M, Drucker N C, Hoffman J E 2020 Physical Review B 101 121103

    [5]

    Mao X R, Shao Z K, Luan H Y, Wang S L, Ma R M 2021 Nature Nanotechnology 16 1099

    [6]

    Oudich M, Su G X, Deng Y C, Benalcazar W, Huang R W, Gerard N J, Lu M H, Zhan P, Jing Y 2021 Physical Review B 103 214311

    [7]

    Wang P, Zheng Y L, Chen X F, Huang C M, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nature 577 42

    [8]

    Huang C M, Ye F W, Chen X F, Kartashov Y V, Konotop V V, Torner L 2016 Scientific Reports 6 32546

    [9]

    Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’ Oliveira P, Audebert P, Marjoribanks R, Martin P 2007 Nature Physics 3 424

    [10]

    Yu L L, Zhao Y, Qian L J, Chen M, Weng S M, Sheng Z M, Jaroszynski D A, Mori W B, Zhang J 2016 Nature Communications 7 11893

    [11]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light: Science & Applications 5 e16015

    [12]

    Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nature Physics 13 440

    [13]

    Sprangle P, Tang C M, Esarey E 1987 IEEE Transactions on Plasma Science 15 145

    [14]

    Hafizi B, Ting A, Sprangle P, Hubbard R F 2000 Physical Review E 62 4120

    [15]

    Sun G, Ott E, Lee Y C, Guzdar P 1987 The Physics of Fluids 30 526

    [16]

    Sprangle P, Esarey E, Krall J, Kartashov J G 1992 Physical Review Letters 69 2200

    [17]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Physical Review Letters 120 154801

    [18]

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Physical Review Letters 130 215001

    [19]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Computational Science —ICCS 2002 2331 342

    [20]

    Nie Z, Pai C H, Hua J F, Zhang C J, Wu Y P, Wan Y, Li F, Jie Z, Cheng Z, Su Q Q, Liu S, Ma Y, Ning X N, He Y X, Lu W, Chu H H, Wang J, Mori W B, Joshi C 2018 Nature Photonics 12 489

    [21]

    Fan W L, Hou X H, Jia M M, Tian M, He Y F, Liu F C 2023 NEW JOURNAL OF PHYSICS 25 043003

  • [1] 安吉, 郑君, 陈民, 远晓辉, 盛政明. 利用深度学习从质子成像反演激光等离子体中的磁场分布研究. 物理学报, doi: 10.7498/aps.75.20251243
    [2] 涂朴, 赵茜, 席保龙, 邵凯花, 席忠红, 苟金明, 王永智, 石玉仁. 玻色-爱因斯坦凝聚体在莫尔晶格势中的带隙孤子. 物理学报, doi: 10.7498/aps.75.20251307
    [3] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, doi: 10.7498/aps.73.20231613
    [4] 许丽, 陈思霖, 杨雪滢, 张晓斐. 周期莫尔晶格中里德伯缀饰玻色气体的基态结构. 物理学报, doi: 10.7498/aps.72.20222292
    [5] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用. 物理学报, doi: 10.7498/aps.72.20221305
    [6] 古杰, 马立国. 莫尔晶格中的激子绝缘体. 物理学报, doi: 10.7498/aps.72.20230079
    [7] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质. 物理学报, doi: 10.7498/aps.71.20220646
    [8] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性. 物理学报, doi: 10.7498/aps.71.20220064
    [9] 张若寒, 任慧莹, 何林. 二维材料平带的实现及其新奇量子物态. 物理学报, doi: 10.7498/aps.71.20220225
    [10] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, doi: 10.7498/aps.71.20212435
    [11] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构. 物理学报, doi: 10.7498/aps.70.20210568
    [12] 夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚. 平带光子微结构中的新颖现象:从模式局域到实空间拓扑. 物理学报, doi: 10.7498/aps.69.20200384
    [13] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响. 物理学报, doi: 10.7498/aps.69.20191332
    [14] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, doi: 10.7498/aps.67.20180564
    [15] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, doi: 10.7498/aps.64.105202
    [16] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究. 物理学报, doi: 10.7498/aps.61.185202
    [17] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, doi: 10.7498/aps.57.7030
    [18] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, doi: 10.7498/aps.55.304
    [19] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算. 物理学报, doi: 10.7498/aps.54.4799
    [20] 张家泰, 刘松芬, 胡北来. 强激光部分离化等离子体成丝不稳定性. 物理学报, doi: 10.7498/aps.52.1668
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-25

/

返回文章
返回