-
准周期莫尔晶格具有独特的平带结构,能够实现光子局域化和长距离光导引。然而,传统光子莫尔晶格仅能导引毫瓦级弱光。为实现强激光的高效导引,本文将莫尔晶格概念引入等离子体领域,提出等离子体莫尔晶格强光导引方案。通过理论计算,证明了等离子体莫尔晶格同样具有传播常数不随横向波数变化的平带,具备长距离光导引的理论基础。利用三维粒子模拟方法,我们研究了等离子体莫尔晶格对相对论强激光脉冲的导引特性。模拟结果表明,在给定参数下,该晶格能将不同初始尺寸的激光脉冲有效约束至相近的通道深度,实现长距离稳定传输。与常用的预制抛物型等离子体密度通道相比,等离子体莫尔晶格能显著抑制导引过程中因尾波场激发导致的激光红移现象,适用于导引大能量短脉冲和小能量长脉冲激光等多种情况。进一步研究表明,等离子体莫尔晶格同样适用于强太赫兹脉冲的长距离弱色散导引。本工作有望为强激光及强太赫兹脉冲的高效弱色散传输提供一种新的思路。
-
关键词:
- 激光等离子体相互作用 /
- 等离子体波导 /
- 莫尔晶格 /
- 平带
Moiré lattices are photonic lattices featuring moiré patterns.Quasiperiodic photonic moiré lattices possess flat energy bands,enabling the localization of the beam and long-distance optical guiding.However,intense lasers alter the induced refractive index of photorefractive crystals,limiting milliwatt-level guiding in quasiperiodic moiré lattices based on such materials.To realize effcient optical guiding with long-distance and low-dispersion propagation,this study introduces the concept of moiré lattices into plasmas,leveraging the high damage threshold of plasmas,and proposes a plasma moiré lattice.
Theoretical calculations were performed by approximating quasiperiodic moiré lattices with periodic ones constructed using specific adjacent angles and employing the finite difference method.It is demonstrated that plasma moiré lattices also exhibit flat energy bands where the propagation constant remains independent of the transverse wavenumber,providing a theoretical foundation for long-distance guiding.
Three-dimensional particle-in-cell simulations were conducted to investigate the guiding characteristics of relativistic intense laser pulses (a0=1,corresponding to Ez =4 × 1012 V/m) in plasma moiré lattices.Under the given parameters,the lattice can effectively confine laser pulses of different initial spot sizes to a similar channel depth,enabling stable long-distance propagation over d=1000λ0.When the initial spot size exceeds the channel depth,part of the beam energy converges toward the center,leading to an increase in the peak intensity by a factor of two,while the other part is scattered,resulting in a decrease in total energy.
Under conditions of matched average density,compared to conventional preformed parabolic plasma density channels,the plasma moiré lattice significantly suppresses laser redshift usually caused by wakefield excitation.For example,for a high-energy short pulse (W=25.4 mJ,τ0=15λ0) or a low-energy long pulse (W=2 mJ,τ0=30λ0),the redshift in the moiré lattice is markedly less than that in the parabolic channel after propagating d=800λ0,as stronger wakefield is excited in the latter.
By scaling the moiré lattice up 75 times,the plasma moiré lattice can effectively guide intense terahertz pulses (center frequency f0=5 THz,λ0=60 µm,a0=0.45,W=24.7 mJ).During long-distance propagation up to 5ZR(Rayleigh length) in the moiré lattice,intense terahertz pulses experience negligible photon deceleration,maintain their original central frequency,and achieve low-dispersion transmission.
The plasma moiré lattice provides a new approach for high-effciency,low-dispersion transmission of intense lasers and terahertz pulses.Potential experimental implementations could involve generating such lattices using two-beam interference with masks or dielectric barrier discharge methods,allowing tunable lattice constants for optimized guiding of diverse electromagnetic pulses.-
Keywords:
- Laser-plasma Interaction /
- Plasma Waveguide /
- Moiré Lattices /
- Flat Bands
-
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L 2018 Nature 556 80
[3] Rosendo L M, Peñaranda F, Christensen J, San-Jose P 2020 Physical Review Letters 125 214301
[4] Dorrell W, Pirie H, Gardezi S M, Drucker N C, Hoffman J E 2020 Physical Review B 101 121103
[5] Mao X R, Shao Z K, Luan H Y, Wang S L, Ma R M 2021 Nature Nanotechnology 16 1099
[6] Oudich M, Su G X, Deng Y C, Benalcazar W, Huang R W, Gerard N J, Lu M H, Zhan P, Jing Y 2021 Physical Review B 103 214311
[7] Wang P, Zheng Y L, Chen X F, Huang C M, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nature 577 42
[8] Huang C M, Ye F W, Chen X F, Kartashov Y V, Konotop V V, Torner L 2016 Scientific Reports 6 32546
[9] Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’ Oliveira P, Audebert P, Marjoribanks R, Martin P 2007 Nature Physics 3 424
[10] Yu L L, Zhao Y, Qian L J, Chen M, Weng S M, Sheng Z M, Jaroszynski D A, Mori W B, Zhang J 2016 Nature Communications 7 11893
[11] Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light: Science & Applications 5 e16015
[12] Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nature Physics 13 440
[13] Sprangle P, Tang C M, Esarey E 1987 IEEE Transactions on Plasma Science 15 145
[14] Hafizi B, Ting A, Sprangle P, Hubbard R F 2000 Physical Review E 62 4120
[15] Sun G, Ott E, Lee Y C, Guzdar P 1987 The Physics of Fluids 30 526
[16] Sprangle P, Esarey E, Krall J, Kartashov J G 1992 Physical Review Letters 69 2200
[17] Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Physical Review Letters 120 154801
[18] Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Physical Review Letters 130 215001
[19] Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Computational Science —ICCS 2002 2331 342
[20] Nie Z, Pai C H, Hua J F, Zhang C J, Wu Y P, Wan Y, Li F, Jie Z, Cheng Z, Su Q Q, Liu S, Ma Y, Ning X N, He Y X, Lu W, Chu H H, Wang J, Mori W B, Joshi C 2018 Nature Photonics 12 489
[21] Fan W L, Hou X H, Jia M M, Tian M, He Y F, Liu F C 2023 NEW JOURNAL OF PHYSICS 25 043003
计量
- 文章访问数: 17
- PDF下载量: 0
- 被引次数: 0








下载: