Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental studies on terahertz radiation from laser-driven air plasma

Wang Wei-Min Zhang Liang-Liang Li Yu-Tong Sheng Zheng-Ming Zhang Jie

Citation:

Theoretical and experimental studies on terahertz radiation from laser-driven air plasma

Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Strong terahertz (THz) radiation of MV/cm can be generated from air via two-color laser scheme. In this paper, we introduce three recent theoretical and experimental researches conducted by Wang et al., in which they explored the long-standing problem of THz generation mechanism and extended the scheme with uncommon frequency ratio. In the widely-studied two-color laser scheme, the frequency ratio of the two lasers is usually fixed at 2/1=1:2. In 2013 they predicted according to the plasma current model, for the first time, that the two-color scheme can be extended to a new frequency ratio 1:2n, where n is an positive integer. In 2017 they found that the frequency ratio can be further extended to much broader values. In that year, their experiments showed, for the first time, efficient THz generation with new ratios of 2/1=1:4 and 2:3. They observed that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization, but the polarization adjustment becomes inefficient by rotating the other laser polarization, which is inconsistent with the symmetric nature in the susceptibility tensor required by the multi-wave mixing theory; the THz energy shows similar scaling laws with different frequency ratios, which is inconsistent with the scaling predicted according to the multi-wave mixing theory. These experimental results are in agreement with the plasma current model and particle-in-cell simulations. Therefore, their studies not only push the development of the two-color scheme, but also show that the THz generation mechanism should be mainly attributed to the plasma current model.
      Corresponding author: Wang Wei-Min, hbwwm1@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775302), the National Key Research and Development Program of China (Grant No. 2018YFA0404801), the Science Challenge Project of China (Grant No. TZ2016005), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants Nos. XDB16010200, XDB07030300).
    [1]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [2]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725

    [3]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [4]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [5]

    Li Y T, Li C, Zhou M L, Wang W M, Du F, Ding W J, Lin X X, Liu F, Sheng Z M, Peng X Y, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Zhang J 2012 Appl. Phys. Lett. 100 254101

    [6]

    Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brommel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G, Paulus G G 2013 Phys. Rev. Lett. 111 074802

    [7]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184

    [9]

    Jin Q, E Y, Williams K, Dai J, Zhang X C 2017 Appl. Phys. Lett. 111 071103

    [10]

    D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Bai Y, Song L, Xu R, Li C, Liu P, Zeng Z, Zhang Z, Lu H, Li R, Xu Z 2012 Phys. Rev. Lett. 108 255004

    [13]

    Liao G Q, Li Y T, Li C, Su L N, Zheng Y, Liu M, Wang W M, Hu Z D, Yan W C, Dunn J, Nilsen J, Hunter J, Liu Y, Wang X, Chen L M, Ma J L, Lu X, Jin Z, Kodama R, Sheng Z M, Zhang J 2015 Phys. Rev. Lett. 114 255001

    [14]

    Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J 2016 Phys. Rev. Lett. 116 205003

    [15]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [17]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima M 2008 Opt. Express 16 16999

    [18]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [19]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [20]

    Wu H C, Meyer-ter-Vehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [21]

    Dai J, Karpowicz N, Zhang X C 2009 Phys. Rev. Lett. 103 023001

    [22]

    Wen H, Lindenberg A M 2009 Phys. Rev. Lett. 103 023902

    [23]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 253901

    [24]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguere M, Lotti A, Couairon A, Legare F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901

    [25]

    Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N 2014 Phys. Rev. Lett. 112 055004

    [26]

    Wang W M, Li Y T, Sheng Z M, Lu X, Zhang J 2013 Phys. Rev. E 87 033108

    [27]

    Kostin V A, Laryushin I D, Silaev A A, Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003

    [28]

    Wang W M, Sheng Z M, Li Y T, Zhang Y, Zhang J 2017 Phys. Rev. A 96 023844

    [29]

    Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C 2017 Phys. Rev. Lett. 119 235001

    [30]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605

    [31]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

    [32]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J 2011 Phys. Plasmas 18 073108

    [33]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

  • [1]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [2]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725

    [3]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [4]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [5]

    Li Y T, Li C, Zhou M L, Wang W M, Du F, Ding W J, Lin X X, Liu F, Sheng Z M, Peng X Y, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Zhang J 2012 Appl. Phys. Lett. 100 254101

    [6]

    Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brommel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G, Paulus G G 2013 Phys. Rev. Lett. 111 074802

    [7]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184

    [9]

    Jin Q, E Y, Williams K, Dai J, Zhang X C 2017 Appl. Phys. Lett. 111 071103

    [10]

    D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Bai Y, Song L, Xu R, Li C, Liu P, Zeng Z, Zhang Z, Lu H, Li R, Xu Z 2012 Phys. Rev. Lett. 108 255004

    [13]

    Liao G Q, Li Y T, Li C, Su L N, Zheng Y, Liu M, Wang W M, Hu Z D, Yan W C, Dunn J, Nilsen J, Hunter J, Liu Y, Wang X, Chen L M, Ma J L, Lu X, Jin Z, Kodama R, Sheng Z M, Zhang J 2015 Phys. Rev. Lett. 114 255001

    [14]

    Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J 2016 Phys. Rev. Lett. 116 205003

    [15]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [17]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima M 2008 Opt. Express 16 16999

    [18]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [19]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [20]

    Wu H C, Meyer-ter-Vehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [21]

    Dai J, Karpowicz N, Zhang X C 2009 Phys. Rev. Lett. 103 023001

    [22]

    Wen H, Lindenberg A M 2009 Phys. Rev. Lett. 103 023902

    [23]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 253901

    [24]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguere M, Lotti A, Couairon A, Legare F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901

    [25]

    Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N 2014 Phys. Rev. Lett. 112 055004

    [26]

    Wang W M, Li Y T, Sheng Z M, Lu X, Zhang J 2013 Phys. Rev. E 87 033108

    [27]

    Kostin V A, Laryushin I D, Silaev A A, Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003

    [28]

    Wang W M, Sheng Z M, Li Y T, Zhang Y, Zhang J 2017 Phys. Rev. A 96 023844

    [29]

    Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C 2017 Phys. Rev. Lett. 119 235001

    [30]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605

    [31]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

    [32]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J 2011 Phys. Plasmas 18 073108

    [33]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

  • [1] Ge Di, Zhao Guo-Peng, Qi Yue-Ying, Chen Chen, Gao Jun-Wen, Hou Hong-Sheng. Influence of relativistic effects on photoionization process of hydrogen-like ions in plasma environment. Acta Physica Sinica, 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] Li Han-Nan, Peng Yan. Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field. Acta Physica Sinica, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [3] Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong. Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser. Acta Physica Sinica, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [4] Liu Yu, Xu Zhong-Feng, Wang Xing, Zeng Li-Xia, Liu Ting. Angular distribution of characteristic X-ray emission from Fe and V following photoionization. Acta Physica Sinica, 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [5] Li Xiao-Lu, Bai Ya, Liu Peng. Control of the terahertz spectra generated from laser induced plasma. Acta Physica Sinica, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [6] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] Zhu Wei-Wei, Zhang Qiu-Ju, Zhang Yan-Hui, Jiao Yang. Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave. Acta Physica Sinica, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [8] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [9] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [13] Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei. PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP. Acta Physica Sinica, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [14] Sun Chang-Ping, Wang Guo-Li, Zhou Xiao-Xin. Theoretical calculation of photonization of F3+ and Ne4+ ions. Acta Physica Sinica, 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [15] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] Liu Ling-Tao, Wang Min-Sheng, Han Xiao-Ying, Li Jia-Ming. Photonionization and radiative recombination of Br——Comparison of rate coefficients deduced form the average atom and detailed configuration models. Acta Physica Sinica, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [19] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
Metrics
  • Abstract views:  6257
  • PDF Downloads:  294
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2018
  • Accepted Date:  02 May 2018
  • Published Online:  20 June 2019

/

返回文章
返回