-
Since the discovery of the ultrafast demagnetization of the ferromagnetic metal, the spin degree of electrons is gradually used to generate terahertz radiation. The terahertz radiation generated by the inverse Rashba-Edelstein effect was confirmed first at the interface of Ag/Bi. However, the spin-to-charge conversion efficiency of the LaAlO3/SrTiO3 interface is one order of magnitude lager than that of the Ag/Bi interface under equilibrium or quasi-equilibrium condition. Whether the LaAlO3/SrTiO3 heterostructures can be used to convert spin current to generate terahertz radiation remains to be systemically studied. In this work, we fabricate the NiFe/LaAlO3//SrTiO3 heterostructures and investigate the generation of terahertz radiation by femtosecond laser pumping and its dependence of the magnetic field direction. We change the thickness of the LaAlO3 to show the applicability of the superdiffusive spin transport model and optical transmission model. We find the multireflections at the LaAlO3/SrTiO3 interface weaken the terahertz radiation intensity. This work provides experimental and theoretical support for further optimizing the generation of terahertz electromagnetic waves.
-
Keywords:
- terahertz radiation /
- spin current /
- inverse Rashba-Edelstein effect /
- oxide heterostructures
[1] Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar
[2] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar
[3] Dornes C, Acremann Y, Savoini M, et al. 2019 Nature 565 209Google Scholar
[4] Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar
[5] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar
[6] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar
[7] Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar
[8] Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar
[9] Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601Google Scholar
[10] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar
[11] Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar
[12] Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502Google Scholar
[13] Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar
[14] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[15] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar
[16] Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar
[17] Sánchez J, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar
[18] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Axel Hoffmann 2018 Phys. Rev. Lett. 120 207207Google Scholar
[19] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar
[20] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Johnson K E, Zhu J X, Sun H, Wang S, Song C W J, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar
[21] Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar
[22] Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar
[23] Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar
[24] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar
[25] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D, Zhao W 2019 Phys. Rev. Appl. 12 034004Google Scholar
[26] Puebla J, Auvray F, Yamaguchi N, Xu M R, Bisri S Z, Iwasa Y, Ishii F, Otani Y 2019 Phys. Rev. Lett. 122 256401Google Scholar
[27] Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R, Han W 2017 Sci. Adv. 3 e1602312Google Scholar
[28] Sing M, Berner G, Goß K, Müller A, Ruff A, Wetscherek A, Thiel S, Mannhart J, Pauli S A, Schneider C W, Willmott P R, Gorgoi M, Schäfers F, Claessen R 2009 Phys. Rev. Lett. 102 176805Google Scholar
[29] Han J, Wan F, Zhu Z, Zhang W 2007 Appl. Phys. Lett. 90 031104Google Scholar
-
图 1 (a) STO(001)衬底生长LAO薄膜的RHEED振荡谱图和衍射图; (b) LAO//STO(001)薄膜形貌图; (c) 太赫兹发射示意图
Figure 1. (a) The RHEED spectrum for the growth process of LAO on STO substrate (001), and the RHEED patterns before and after the growth of the LAO films; (b) the surface morphology of LAO//STO films; (c) the schematic diagram of the terahertz emission.
-
[1] Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar
[2] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar
[3] Dornes C, Acremann Y, Savoini M, et al. 2019 Nature 565 209Google Scholar
[4] Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar
[5] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar
[6] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar
[7] Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar
[8] Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar
[9] Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601Google Scholar
[10] Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar
[11] Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar
[12] Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502Google Scholar
[13] Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar
[14] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[15] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar
[16] Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar
[17] Sánchez J, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar
[18] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Axel Hoffmann 2018 Phys. Rev. Lett. 120 207207Google Scholar
[19] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar
[20] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Johnson K E, Zhu J X, Sun H, Wang S, Song C W J, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar
[21] Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar
[22] Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar
[23] Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar
[24] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar
[25] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D, Zhao W 2019 Phys. Rev. Appl. 12 034004Google Scholar
[26] Puebla J, Auvray F, Yamaguchi N, Xu M R, Bisri S Z, Iwasa Y, Ishii F, Otani Y 2019 Phys. Rev. Lett. 122 256401Google Scholar
[27] Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R, Han W 2017 Sci. Adv. 3 e1602312Google Scholar
[28] Sing M, Berner G, Goß K, Müller A, Ruff A, Wetscherek A, Thiel S, Mannhart J, Pauli S A, Schneider C W, Willmott P R, Gorgoi M, Schäfers F, Claessen R 2009 Phys. Rev. Lett. 102 176805Google Scholar
[29] Han J, Wan F, Zhu Z, Zhang W 2007 Appl. Phys. Lett. 90 031104Google Scholar
Catalog
Metrics
- Abstract views: 4972
- PDF Downloads: 223
- Cited By: 0