-
High-performance terahertz emitters, which convert the femtosecond laser pulses into terahertz pulses, are essential for terahertz spectroscopy technology and terahertz wireless communication. Spintronic terahertz emitters based on ferromagnet/nonmagnet bilayers have attracted tremendous attention due to their high efficiency, ultra-broadband, low cost and high flexibility. Here, we systematically investigate the terahertz emission from polycrystalline topological insulator Bi2Te3/ferromagnetic CoFeB heterostructure grown by magnetron sputtering. The Bi2Te3/CoFeB heterostructure exhibits high efficiency of terahertz emission, and the polarization of terahertz waves can be controlled by the external magnetic field direction. The performance of Bi2Te3/CoFeB heterostructure is almost comparable to that of the Pt/CoFeB bilayer. In contrast, no terahertz emission is observed in the pure Bi2Te3 or CoFeB film driven by femtosecond laser pulses, probably because the Bi2Te3 prepared by sputtering is polycrystalline and the thickness of CoFeB is too thin. We also compare the performances of Bi2Te3/CoFeB grown on MgO, glass and high-resistivity silicon substrates, and find that the samples grown on MgO substrates exhibit the best emission performances. The glass substrate absorbs more terahertz waves than MgO substrate, resulting in a slightly weaker terahertz signal emitted from the Bi2Te3/CoFeB grown on the glass substrate. Although the absorption coefficient of high-resistivity silicon to terahertz waves is very small, the residual pump light excites the high-resistivity silicon to generate the photo-generated carriers, which change the conductivity of the high-resistivity silicon and reduce the transmittance of terahertz wave. We attribute the mechanism of the terahertz emission to the spin-charge conversion at the interface of Bi2Te3/CoFeB. The terahertz emission efficiency of our sample is expected to be able to be further improved by optimizing the samples. Moreover, with the sputtering method, it is possible to fabricate large area samples at low cost, which is critical for commercial applications.
-
Keywords:
- terahertz emission /
- topological insulator/ferromagnetic heterostructures /
- femtosecond laser
[1] Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[2] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar
[3] Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar
[4] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar
[5] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar
[6] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar
[7] Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar
[8] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar
[9] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar
[10] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar
[11] Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar
[12] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar
[13] Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar
[14] Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar
[15] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar
[16] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar
[17] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar
[18] Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar
[19] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar
[20] van Exter M, Grischkowsky D 1990 Appl. Phys. Lett. 56 1694Google Scholar
[21] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar
-
图 4 Bi2Te3(4)/CoFeB(2)异质结的太赫兹辐射 (a) 抽运光从Bi2Te3(4)/CoFeB(2)样品正面和背面入射以及磁场反向时Bi2Te3(4)/CoFeB(2)辐射的太赫兹波形; (b) Bi2Te3(4)/CoFeB(2)异质结发射的太赫兹脉冲的峰值振幅与施加的外磁场方向的关系
Figure 4. Terahertz emission from Bi2Te3(4)/CoFeB(2) heterostructure: (a) Terahertz waveforms emitted from the Bi2Te3(4)/CoFeB(2) heterostructure measured with front and back sample excitation and reversed magnetic field; (b) the peak amplitude of the terahertz signal emitted from the Bi2Te3(4)/CoFeB(2) heterostructure as a function of magnetic field angle θ, with respect to the x-axis.
-
[1] Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar
[2] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar
[3] Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar
[4] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar
[5] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar
[6] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar
[7] Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar
[8] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar
[9] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar
[10] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar
[11] Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar
[12] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar
[13] Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar
[14] Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar
[15] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar
[16] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar
[17] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar
[18] Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar
[19] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar
[20] van Exter M, Grischkowsky D 1990 Appl. Phys. Lett. 56 1694Google Scholar
[21] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar
Catalog
Metrics
- Abstract views: 7112
- PDF Downloads: 242
- Cited By: 0