Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure of interface of HfO2/SnO2 heterostructure

FENG Chunmeng YANG Yang LI Zhiqing

Citation:

Electronic structure of interface of HfO2/SnO2 heterostructure

FENG Chunmeng, YANG Yang, LI Zhiqing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In SrTiO3-based oxide heterostructures, the mobility of the two-dimensional electron gas (2DEG) at the interface is relatively low at room temperature due to the influence of Ti 3d orbitals, which limits their applications in semiconductor devices. In contrast, the conduction band bottom of SnO2 is composed of Sn 5s orbitals, and it has been demonstrated that bulk SnO2 exhibits high carrier mobility at room temperature. Therefore, SnO2-based heterostructure interfaces have the potential to form 2DEG with high mobility at room temperature. In this paper, we construct a heterostructure (HfO2)7/(SnO2)13 with $2 \times 1$ supercell in (001) plane and systematically investigate the electronic structure of the heterostructure by using first-principles calculations. The calculation results show that the defect-free (HfO2)7/(SnO2)13 heterostructure has a band structure similar to that of a semiconductor, and there is no 2DEG near the interface of the heterostructure. However, the conduction band bottom is mainly contributed by non-degenerate Sn 5s orbitals in this situation. In the in-plane $2 \times 1$ supercell of the (HfO2)7/(SnO2)13 heterostructure, each layer contains 8 oxygen atoms (the thickness of 1 unit cell is defined as a layer). When an oxygen atom in a layer on the SnO2 side near the interface of the heterostructure is removed, the presence of the oxygen vacancy leads to the formation of a defect band below the conduction band. This will lead to hopping conductivity in the heterostructure. However, 2DEG still does not appear near the heterostructure interface. When the oxygen vacancy is located in the surface layer of the HfO2 in the supercell structure, the presence of the oxygen vacancy leads to the formation of a defect state in the surface. The electrons in the defect state are localized and do not contribute to conductivity. However, the defect band overlaps with the conduction band at the interface, causing the electrons on the surface of HfO2 to tunnel towards the interface. In this scenario, the 2DEG emerges in the vicinity of the heterostructure interface. In addition, for HfO2/SnO2 heterostructures with thinner HfO2 layers, such as HfO2 layer with a thickness of 7 unit cells (about 2.37 nm), the H atoms adsorbed on the HfO2 surface provide electrons for the heterostructure. Some of these electrons transfer to the conduction band near the interface, leading to the formation of a 2DEG in that region. Meanwhile, the remaining electrons stay on the surface, forming a conductive layer with a thickness of approximately 2 unit cells. As the thickness of the HfO2 layer increases, the probability of electrons transferring from the surface to the interface gradually decreases, resulting in a gradual decrease in the electron density at the interface.
  • 图 1  SnO2和HfO2块体的能带结构图(费米能级设为零点) (a), (b)采用GGA+U所得(a) SnO2和(b)HfO2的能带结构; (c), (d)采用$U_{\text{O}}^{{\text{2p}}}$ = 8 eV的GGA+U所得(c) SnO2和(d) HfO2的能带结构; (e), (f)采用HSE杂化泛函所得(e) SnO2和(f)HfO2的能带结构; (g), (h)采用$U_{\text{O}}^{{\text{2p}}}$ = 14 eV的GGA+U所得(g)SnO2和(h)HfO2的能带结构

    Figure 1.  Band structure of bulk SnO2 and HfO2. The band structures of (a) SnO2 and (b) HfO2 obtained by GGA+U; (c) SnO2 and (d) HfO2 obtained by GGA+U with $U_{\text{O}}^{{\text{2p}}}$ = 8 eV; The band structures of (e) SnO2 and (f) HfO2 obtained by HSE hybrid functional; The band structures of (g) SnO2 and (h) HfO2 obtained by GGA+U with $U_{\text{O}}^{{\text{2p}}}$ = 14 eV. The Fermi level is set as zero.

    图 2  面内2×1 (HfO2)7/(SnO2)13异质结构示意图

    Figure 2.  Schematic structure of the in-plane 2×1 (HfO2)7/(SnO2)13 heterostructure.

    图 3  (HfO2)7/(SnO2)13异质结构的电子结构(费米能级设为零点) (a)能带结构图, 方形点线标记能带来源于异质结表面L7层不饱和悬键的畸变; (b)原子层分解态密度图; (c)平面平均电荷密度差, 其中负值和正值分别表示电子的耗尽和积累, L表示沿异质结构的距离, 点划线给出了异质结界面的位置; (d) Sn, Hf, O原子轨道投影态密度

    Figure 3.  Electronic structure of (HfO2)7/(SnO2)13 heterostructure. (a) The energy band structure. The band marked by the square dots originates from the distortion of the unsaturated dangling bonds of the L7 layer near the heterojunction surface. (b) The partial density of states projected onto atomic planes. (c) The plane-averaged charge density difference. The negative and positive values represent the depletion and accumulation of electrons, respectively. L is noted as the distance along direction of the heterostructure, and the dashed line gives the location of the interface. (d) Projection density of states for Sn, Hf, and O atomic orbitals, where the Fermi level is set as zero.

    图 4  (HfO2)7/(SnO2)13异质结表面和界面附近不同原子层的氧空位形成能, 其中点划线给出了异质结界面的位置, 圆圈标记为SnO2侧和HfO2侧的氧空位形成能最低的位置

    Figure 4.  Formation energies of oxygen vacancies in different atomic layers near the surface and interface of (HfO2)7/(SnO2)13 heterostructure. The dashed line gives the position of the heterojunction interface, and the circles mark the lowest oxygen vacancy formation energy on the SnO2 side and the HfO2 side.

    图 5  存在氧空位时(HfO2)7/(SnO2)13异质结的能带结构图和原子层分解态密度图 (a), (b)氧空位位于L$\overline {2} $原子层的情况; (c), (d)氧空位位于L7原子层的情况; 粗线标记能带为氧空位的缺陷能级, 计算结果基于$U_{\text{O}}^{2{\text{p}}}$ = 14 eV的GGA+U方法, 费米能级设为零点

    Figure 5.  Energy band structure and partial density of states projected onto atomic planes of (HfO2)7/(SnO2)13 heterostructure with oxygen vacancy: (a), (b) The cases for oxygen vacancy on the L$\overline {2} $ layer; (c), (d) the cases for oxygen vacancy on the L7 layer. The band marked by bold line are the defective energy levels of the oxygen vacancy. The calculation results are based on the GGA+U method of $U_{\text{O}}^{{\text{2p}}}$ = 14 eV, and the Fermi level is set as zero.

    图 6  表面吸附H原子的(HfO2)7/(SnO2)13异质结的电子结构(费米能级设为零点) (a)能带结构图, 方形点线标记能带来源于表面处电子, 圆圈标记能带来自界面处电子; (b)原子层分解态密度图

    Figure 6.  Electronic structure of (HfO2)7/(SnO2)13 heterostructure adsorbed H atoms on the surface. (a) The energy band structure. The band marked by the square dots originates from the surface electrons, and the band marked by the circles comes from electrons at interface. (b) The partial density of states projected onto atomic planes. The Fermi level is set as zero.

    图 7  表面吸附H原子 $ {\left( {{\text{Hf}}{{\text{O}}_2}} \right)_l}/{\left( {{\text{Sn}}{{\text{O}}_2}} \right)_{13}} $(l = 7, 8, 9, 10)异质结界面附近的电子浓度

    Figure 7.  Electron density near the interface of $ {\left( {{\text{Hf}}{{\text{O}}_2}} \right)_l}/{\left( {{\text{Sn}}{{\text{O}}_2}} \right)_{13}} $ (l = 7, 8, 9, 10) heterostructures adsorbed H atoms on the HfO2 surface.

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Tampo H, Shibata H, Matsubara K, Yamada A, Fons P, Niki S, Yamagata M, Kanie H 2006 Appl. Phys. Lett. 89 132113Google Scholar

    [3]

    Hotta Y, Susaki T, Hwang H Y 2007 Phys. Rev. Lett. 99 236805Google Scholar

    [4]

    Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygård J, Lu L, Büchner B, Shen B G, Linderoth S, Pryds N 2013 Nat. Commun. 4 1371Google Scholar

    [5]

    Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104Google Scholar

    [6]

    Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502Google Scholar

    [7]

    颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301Google Scholar

    Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301Google Scholar

    [8]

    Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W, Sun J R 2018 Phys. Rev. Lett. 121 116803Google Scholar

    [9]

    Kozuka Y, Tsukazaki A, Maryenko D, Falson J, Akasaka S, Nakahara K, Nakamura S, Awaji S, Ueno K, Kawasaki M 2011 Phys. Rev. B 84 033304Google Scholar

    [10]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [11]

    王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴 2023 物理学报 72 176801Google Scholar

    Wang J G, Li L L, Qiu G T, Chen X M, Cao D X 2023 Acta Phys. Sin. 72 176801Google Scholar

    [12]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [13]

    Chen X H, Li Z Q, Hu Z X, Gao K H 2022 Phys. Rev. B 105 205437Google Scholar

    [14]

    Nakano M, Tsukazaki A, Ueno K, Gunji R Y, Ohtomo A, Fukumura T, Kawasaki M 2010 Appl. Phys. Lett. 96 052116Google Scholar

    [15]

    张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202Google Scholar

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 Acta Phys. Sin. 62 150202Google Scholar

    [16]

    Himmetoglu B, Janotti A, Peelaers H, Alkauskas A, Van de Walle C G 2014 Phys. Rev. B 90 241204Google Scholar

    [17]

    Himmetoglu B, Janotti A 2016 J. Phys. Condens. Matter 28 065502Google Scholar

    [18]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104Google Scholar

    [19]

    Chen X H, Li Z Q, Hou D Y, Hu Z X, Gao K H 2023 Phys. Rev. B 107 165411Google Scholar

    [20]

    Sanon G, Rup R, Mansingh A 1991 Phys. Rev. B 44 5672Google Scholar

    [21]

    Toyosaki H, Kawasaki M, Tokura Y 2008 Appl. Phys. Lett. 93 132109Google Scholar

    [22]

    Paudel T R, Tsymbal E Y 2017 Phys. Rev. B 96 245423Google Scholar

    [23]

    Nazir S, Cheng J L, Yang K S. 2015 ACS Appl. Mater. Interfaces 8 390

    [24]

    Lee B H, Kang L, Nieh R, Qi W J, Lee J C 2000 Appl. Phys. Lett. 76 1926Google Scholar

    [25]

    Seo M, Kim S K, Han J H, Hwang C S 2010 Chem. Mater. 22 4419Google Scholar

    [26]

    Seo M, Kim S K, Min Y S, Hwang C S 2011 J. Mater. Chem. 21 18497Google Scholar

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Gilani R, Rehman S U, Butt F K, Haq B U, Aleem F 2018 Silicon 10 2317Google Scholar

    [32]

    Singh A K, Janotti A, Schefler M, Van de Walle C G 2008 Phys. Rev. Lett. 101 055502Google Scholar

    [33]

    Park J, Saidi W A, Chorpening B, Duan Y H 2021 J. Phys. Chem. C 125 22231Google Scholar

    [34]

    Marcillo F, Stashans A 2015 J. Theor. Comput. Chem. 13 1450069

    [35]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [36]

    Pavoni E, Mohebbi E, Stipa P, Mencarelli D, Pierantoni L 2022 Materials 15 4175Google Scholar

    [37]

    Akbar W, Elahi I, Nazir S 2020 J. Magn. Magn. Mater. 511 166948Google Scholar

    [38]

    Li J P, Meng S H, Yang C, Lu H T, Tohyama T 2018 Chin. Phys. B 27 027101Google Scholar

    [39]

    Krishnaswamy K, Himmetoglu B, Kang Y, Janotti A, Van de Walle C G 2017 Phys. Rev. B 95 205202Google Scholar

    [40]

    Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, HamzićA, Broto J M, Barthélémy A, Fert A 2007 Phys. Rev. Lett. 98 216803Google Scholar

    [41]

    Oh T 2017 Trans. Electr. Electron. Mater. 18 21Google Scholar

    [42]

    Liu H Y, Zeng F., Lin Y S, Wang G Y, Pan F 2013 Appl. Phys. Lett. 102 181908Google Scholar

    [43]

    Singh R, Khan M A, Mukherjee S, Kranti A 2018 IEEE Trans. Electron Devices 65 2850Google Scholar

    [44]

    Bandura A V, Kubicki J D, Sofo J O 2008 J. Phys. Chem. B 112 11616Google Scholar

    [45]

    Li L, Huang X, Zhang Y F, Guo X, Chen W K 2013 Appl. Surf. Sci. 264 424Google Scholar

    [46]

    Jia H, Liang W H, Zhou M, Cao E S, Yang Z, Hao W T, Zhang Y J 2018 J. Supercond. Novel. Magn. 31 3361Google Scholar

    [47]

    Li Y, Phattalung S N, Limpijumnong S, Kim J, Yu J 2011 Phys. Rev. B 84 245307Google Scholar

  • [1] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, doi: 10.7498/aps.72.20230044
    [2] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, doi: 10.7498/aps.72.20230573
    [3] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, doi: 10.7498/aps.72.20221545
    [4] Zhang Xue-Bing, Liu Nai-Zhang, Yao Ruo-He. Polar optical phonon scattering of two-dimensional electron gas in AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, doi: 10.7498/aps.69.20200250
    [5] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, doi: 10.7498/aps.68.20191074
    [6] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, doi: 10.7498/aps.67.20171827
    [7] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, doi: 10.7498/aps.63.080202
    [8] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, doi: 10.7498/aps.62.207303
    [9] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, doi: 10.7498/aps.62.150202
    [10] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, doi: 10.7498/aps.61.237302
    [11] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, doi: 10.7498/aps.60.117304
    [12] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, doi: 10.7498/aps.56.4955
    [13] Zhou Wen-Zheng, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Cui Li-Jie, Li Dong-Lin, Gao Hong-Ling, Zeng Yi-Ping, Guo Shao-Ling, Gui Yong-Sheng, Chu Jun-Hao. Weak anti-localization in InAlAs/InGaAs/InAlAs high mobility two-dimensional electron gas systems. Acta Physica Sinica, doi: 10.7498/aps.56.4099
    [14] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, doi: 10.7498/aps.56.6013
    [15] Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, doi: 10.7498/aps.55.2498
    [16] Li Dong-Lin, Zeng Yi-Ping. Theoretical analysis about the influence of channel layer thickness on the 2D electron gas and its distribution in InP-based high-electron-mobility transistors. Acta Physica Sinica, doi: 10.7498/aps.55.3677
    [17] Zhou Wen-Zheng, Yao Wei, Zhu Bo, Qiu Zhi-Jun, Guo Shao-Ling, Lin Tie, Cui Li-Jie, Gui Yong-Sheng, Chu Jun-Hao. Magneto-transport characteristics of two-dimensional electron gas for Si δ-doped InAlAs/InGaAs single quantum well. Acta Physica Sinica, doi: 10.7498/aps.55.2044
    [18] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, doi: 10.7498/aps.53.2320
    [19] Kong Yue-Chan, Zheng You-Dou, Chu Rong-Ming, Gu Shu-Lin. Influnce of Al-content on the property of the two-dimensional electron gases in AlxGa1-xN/GaN heterostructures. Acta Physica Sinica, doi: 10.7498/aps.52.1756
    [20] JIANG CHUN-PING, GUI YONG-SHENG, ZHENG GUO-ZHEN, MA ZHI-XUN, LI BIAO, GUO SHAO-L ING, CHU JUN-HAO. STUDY ON TRANSPORT PROPERTIES OF TWO-DIMENSIONAL ELECTRON GASES IN n-Hg0.80 Mg0.20Te INTERFACE ACCUMULATION LAYER. Acta Physica Sinica, doi: 10.7498/aps.49.1804
Metrics
  • Abstract views:  256
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2025
  • Accepted Date:  24 February 2025
  • Available Online:  04 March 2025

/

返回文章
返回