Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron transport mechanism in AlN/β-Ga2O3 heterostructures

Zhou Zhan-Hui Li Qun He Xiao-Min

Citation:

Electron transport mechanism in AlN/β-Ga2O3 heterostructures

Zhou Zhan-Hui, Li Qun, He Xiao-Min
PDF
HTML
Get Citation
  • The β-Ga2O3 has received much attention in the field of power and radio frequency electronics, due to an ultrawide bandgap energy of ~4.9 eV and a high breakdown field strength of ~8 MV/cm (Poncé et al. 2020 Phys. Rev. Res. 2 033102). The in-plane lattice mismatch of 2.4% between the ($ \bar 201 $) plane of β-Ga2O3 and the (0002) plane of wurtzite AlN is beneficial to the formation of an AlN/β-Ga2O3 heterostructure (Sun et al. 2017 Appl. Phys. Lett. 111 162105), which is a potential candidate for β-Ga2O3-based high electron mobility transistors (HEMTs). In this study, the Schrödinger-Poisson equations are solved to calculate the AlN/β-Ga2O3 conduction band profile and the two-dimensional electron gas(2DEG) sheet density, based on the supposition that the 2DEG originates from door-like surface states distributed evenly below the AlN conduction band. The main scattering mechanisms in AlN/β-Ga2O3 heterostructures, i.e. the ionized impurity scattering, interface roughness scattering, acoustic deformation-potential scattering, and polar optical phonon scattering, are investigated by using the Boltzmann transport theory. Besides, the relative importance of different scattering mechanisms is evaluated. The results show that at room temperature, the 2DEG sheet density increases with the augment of AlN thickness, and reaches 1.0×1013 cm–2 at an AlN thickness of 6 nm. With the increase of the 2DEG sheet density, the ionized impurity scattering limited mobility increases, but other scattering mechanisms limited mobilities decrease. The interface roughness scattering dominates the mobility at low temperature and moderate temperature (T < 148 K), and the polar optical phonon scattering dominates the mobility at temperatures above 148 K. The room-temperature mobility is 368.6 cm2/(V·s) for the AlN/β-Ga2O3 heterostructure with an AlN thickness of 6 nm.
      Corresponding author: Li Qun, liqun@xaut.edu.cn ; He Xiao-Min, hexiaomin@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104190), the China Postdoctoral Science Foundation (Grant No. 2019M653881XB), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-323).
    [1]

    Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201Google Scholar

    [2]

    Ranga P, Bhattacharyya A, Chmielewski A, Roy S, Sun R, Scarpulla M A, Alem N, Krishnamoorthy S 2021 Appl. Phys. Express 14 025501Google Scholar

    [3]

    Wong M H, Bierwagen O, Kaplar R J, Umezawa H 2021 J. Mater. Res. 36 4601Google Scholar

    [4]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [5]

    Poncé S, Giustino F 2020 Phys. Rev. Res. 2 033102Google Scholar

    [6]

    Ghosh K, Singisetti U 2017 J. Appl. Phys. 122 035702Google Scholar

    [7]

    Nehate S, Saikumar A K, Sundaram K 2021 Crit. Rev. Solid State 47 538Google Scholar

    [8]

    Wang D P, Li J N, Jiao A N, Zhang X C, Lu X l, Ma X H, Hao Y 2021 J. Alloys Compd. 855 157296Google Scholar

    [9]

    Ranga P, Bhattacharyya A, Rishinaramangalam A, Ooi Y K, Scarpulla M A, Feezell D, Krishnamoorthy S 2020 Appl. Phys. Express 13 045501Google Scholar

    [10]

    Tadjer M J, Sasaki K, Wakimoto D, Anderson T J, Mastro M A, Gallagher J C, Jacobs A G, Mock A L, Koehler A D, Ebrish M, Hobart K D, Kuramata A 2021 J. Vac. Sci. Technol. 39 033402Google Scholar

    [11]

    Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S, Rajan S 2017 Appl. Phys. Lett. 111 023502Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J F, Liu Y M, Moore W, Arehart A R, Ringel S A, Rajan S 2020 J. Appl. Phys. 127 215706Google Scholar

    [13]

    Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502Google Scholar

    [14]

    Sun H D, Torres Castanedo C G, Liu K K, Li K H, Guo W Z, Lin R H, Liu X W, Li J T, Li X H 2017 Appl. Phys. Lett. 111 162105Google Scholar

    [15]

    Ho S T 2020 M. S. Dessertation (New York: Cornell University)

    [16]

    Yan P R, Zhang Z, Xu Y, Chen H, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Zhang C F, Hao Y 2022 Vacuum 204 111381Google Scholar

    [17]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2021 Int. J. Numer. Model. El. 34 e2794Google Scholar

    [18]

    Song K, Zhang H C, Fu H Q, Yang C, Singh R, Zhao Y J, Sun H D, Long S B 2020 J. Phys. D Appl. Phys. 53 345107Google Scholar

    [19]

    Jiao W Y, Kong W, Li J C, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103Google Scholar

    [20]

    Yu C, Debdeep J 2007 Appl. Phys. Lett. 90 182112Google Scholar

    [21]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2020 J. Semicond. 41 102802Google Scholar

    [22]

    Gordon L, Miao M-S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501Google Scholar

    [23]

    Goyal N, Iniguez B, Fjeldly T A 2013 AIP Conf. Proc. 1566 393Google Scholar

    [24]

    Goyal N, Fjeldly T A 2016 IEEE T. Electron Dev. 63 881Google Scholar

    [25]

    陈谦, 李群, 杨莺 2019 物理学报 68 017301Google Scholar

    Chen Q, Li Q, Yang Y 2019 Acta Phys. Sin. 68 017301Google Scholar

    [26]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [27]

    李群, 陈谦, 种景 2018 物理学报 67 027303Google Scholar

    Li Q, Chen Q, Chong J 2018 Acta Phys. Sin. 67 027303Google Scholar

    [28]

    张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202Google Scholar

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 Acta Phys. Sin. 62 150202Google Scholar

    [29]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755Google Scholar

    [30]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001Google Scholar

    [31]

    Li Q, Zhang J W, Chong J, Hou X 2013 Appl. Phys. Express 6 121102Google Scholar

    [32]

    Kawamura T, Das Sarma S 1992 Phys. Rev., B: Condens. Matter. 45 3612Google Scholar

    [33]

    Goodnick S M, Ferry D K, Wilmsen C W 1985 Phys. Rev. B 32 8171Google Scholar

    [34]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 45316Google Scholar

    [35]

    Ishibashi A, Takeishi H, Mannoh M, Yabuuchi Y, Ban Y 1996 J. Electron. Mater. 25 799Google Scholar

    [36]

    Li J M, Wu J J, Han X X, Lu Y W, Liu X L, Zhu Q S, Wang Z G 2005 Semicond. Sci. Technol. 20 1207Google Scholar

    [37]

    Anderson D, Zakhleniuk N, Babiker M, Ridley B, Bennett C 2001 Phys. Rev. B 63 245313Google Scholar

    [38]

    Parisini, Antonella, Fornari, Roberto 2016 Semicond. Sci. Technol. 31 35023.1Google Scholar

    [39]

    Zhi G, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T 2015 Appl. Phys. Lett. 106 591

    [40]

    Varley J B, Weber J R, Janotti A, Van d W, C. G. 2010 Appl. Phys. Lett. 108 142106Google Scholar

    [41]

    Passlack M, Hunt N, Schubert E F, Zydzik G J, Hong M, Mannaerts J P, Opila R L, Fischer R J 1994 Appl. Phys. Lett. 64 2715Google Scholar

    [42]

    Passlack M, Hong M, Schubert E F, Kwo J R, Mannaerts J P, Chu S, Moriya N, Thiel F A 1995 Appl. Phys. Lett. 66 625Google Scholar

    [43]

    Rebien M, Henrion W, Hong M, Mannaerts J P, Fleischer M 2002 Appl. Phys. Lett. 81 250Google Scholar

    [44]

    Rode D L 1970 Phys. Rev. B 2 1012Google Scholar

    [45]

    Liu B, Gu M, Liu X 2007 Appl. Phys. Lett. 91 172102Google Scholar

    [46]

    Fischer A, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2712Google Scholar

    [47]

    Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J, Graul J 2001 J. Electron. Mater. 30 L17Google Scholar

  • 图 1  (a) β-Ga2O3 ($\bar 201 $)晶面和(b)AlN (0002)晶面的原子排列

    Figure 1.  The atomic arrangement in (a) ($\bar 201 $) plane of β-Ga2O3 and (b) (0002) plane of AlN.

    图 2  AlN/β-Ga2O3异质结表面态能级分布示意图

    Figure 2.  Schematic drawing of energy distribution of surface states in an AlN/β-Ga2O3 heterostructure.

    图 3  AlN/β-Ga2O3异质结导带形状和2DEG浓度分布, AlN厚度$ d=6 $ nm

    Figure 3.  The conduction band profile and spatially distributed density of the 2DEG in an AlN/β-Ga2O3 heterostructure with an AlN thickness of 6 nm.

    图 4  2DEG面密度对AlN厚度的依赖关系

    Figure 4.  Dependence of the 2DEG sheet density on the AlN thickness.

    图 5  IRS限制的迁移率对相关长度$ \varLambda $的依赖关系

    Figure 5.  Dependence of the mobility limited by IRS on correlation length $ \varLambda $ for different roughness heights.

    图 6  300 K时离化杂质散射限制的动量弛豫时间($ {\tau }_{\rm{I}\rm{I}\rm{S}} $)、界面粗糙散射限制的动量弛豫时间($ {\tau }_{\rm{D}\rm{P}} $)、声学形变势散射限制的动量弛豫时间($ {\tau }_{\rm{D}\rm{P}} $)对电子能量的依赖关系

    Figure 6.  Dependence of the momentum relaxation time limited by ionized impurity scattering ($ {\tau }_{\rm{I}\rm{I}\rm{S}} $), interface roughness scattering ($ {\tau }_{\rm{I}\rm{R}\rm{S}} $) and acoustic DP scattering ($ {\tau }_{\rm{D}\rm{P}} $) on the electron energy.

    图 7  动量弛豫时间对电子能量的依赖关系

    Figure 7.  Dependence of the momentum relaxation time on the electron energy.

    图 8  300 K时离化杂质散射限制的迁移率($ {\mu }_{\rm{I}\rm{I}\rm{S}} $)、界面粗糙散射限制的迁移率($ {\mu }_{\rm{I}\rm{R}\rm{S}} $)、声学形变势散射限制的迁移率($ {\mu }_{\rm{D}\rm{P}} $)、极性光学声子散射限制的迁移率($ {\mu }_{\rm{P}\rm{O}} $)对2DEG面密度的依赖

    Figure 8.  Dependence of the mobility limited by ionized impurity scattering ($ {\mu }_{\rm{I}\rm{I}\rm{S}} $), interface roughness scattering ($ {\mu }_{\rm{I}\rm{R}\rm{S}} $), acoustic DP scattering ($ {\mu }_{\rm{D}\rm{P}} $) and PO phonon scattering ($ {\mu }_{\rm{P}\rm{O}} $) on the 2DEG sheet density at 300 K.

    图 9  $ {\mu }_{\rm{D}\rm{P}} $, $ {\mu }_{\rm{I}\rm{I}\rm{S}} $, $ {\mu }_{\rm{I}\rm{R}\rm{S}} $, $ {\mu }_{\rm{P}\rm{O}} $以及总的迁移率($ {\mu }_{\rm{T}\rm{O}\rm{T}} $)对温度的依赖关系, 相关长度$ \varLambda =5\;\rm{n}\rm{m} $, 粗糙高度$\varDelta =1\;\rm{n}\rm{m}$

    Figure 9.  Temperature dependence of the $ {\mu }_{\rm{D}\rm{P}} $, $ {\mu }_{\rm{I}\rm{I}\rm{S}} $, $ {\mu }_{\rm{I}\rm{R}\rm{S}} $, $ {\mu }_{\rm{P}\rm{O}} $, and the total mobility$ {\mu }_{\rm{T}\rm{O}\rm{T}} $, the correlation length $ \varLambda =5 $ nm and roughness height $\varDelta =1$ nm.

    表 1  计算过程中用到的AlN/β-Ga2O3异质结参数($ {m}_{0} $为自由电子质量)

    Table 1.  Parameters of AlN/β-Ga2O3 heterostructure employed in calculations ($ {m}_{0} $ is the free electron mass).

    物理量符号/单位参数值
    AlN晶格常数aAlN3.112[26]
    AlN压电常数e31/(C·m−2)–0.60[26]
    e33/(C·m−2)1.55[26]
    AlN弹性系数c13/GPa9.0[26]
    c33/GPa10.7[26]
    β-Ga2O3晶格常数$ b_{\rm Ga_2O_3} $/Å3.037[14]
    β-Ga2O3质量密度ρ/(g·cm–3)5.88[38]
    β-Ga2O3声学形变势D/eV6.9[39]
    β-Ga2O3纵声学模速度ul/(m·s–1)6.8×103[39]
    β-Ga2O3电子有效质量m*0.28m0[40]
    β-Ga2O3高频介电常数$ {\varepsilon }_{\infty } $3.57[4143]
    β-Ga2O3低频介电常数$ {\varepsilon }_{\rm{s}} $10.2[4143]
    β-Ga2O3极性光学声子能量$ \hslash {\omega }_{\rm{P}\rm{O}}/\rm{m}\rm{e}\rm{V} $94 [44,45]
    DownLoad: CSV
  • [1]

    Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201Google Scholar

    [2]

    Ranga P, Bhattacharyya A, Chmielewski A, Roy S, Sun R, Scarpulla M A, Alem N, Krishnamoorthy S 2021 Appl. Phys. Express 14 025501Google Scholar

    [3]

    Wong M H, Bierwagen O, Kaplar R J, Umezawa H 2021 J. Mater. Res. 36 4601Google Scholar

    [4]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [5]

    Poncé S, Giustino F 2020 Phys. Rev. Res. 2 033102Google Scholar

    [6]

    Ghosh K, Singisetti U 2017 J. Appl. Phys. 122 035702Google Scholar

    [7]

    Nehate S, Saikumar A K, Sundaram K 2021 Crit. Rev. Solid State 47 538Google Scholar

    [8]

    Wang D P, Li J N, Jiao A N, Zhang X C, Lu X l, Ma X H, Hao Y 2021 J. Alloys Compd. 855 157296Google Scholar

    [9]

    Ranga P, Bhattacharyya A, Rishinaramangalam A, Ooi Y K, Scarpulla M A, Feezell D, Krishnamoorthy S 2020 Appl. Phys. Express 13 045501Google Scholar

    [10]

    Tadjer M J, Sasaki K, Wakimoto D, Anderson T J, Mastro M A, Gallagher J C, Jacobs A G, Mock A L, Koehler A D, Ebrish M, Hobart K D, Kuramata A 2021 J. Vac. Sci. Technol. 39 033402Google Scholar

    [11]

    Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S, Rajan S 2017 Appl. Phys. Lett. 111 023502Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J F, Liu Y M, Moore W, Arehart A R, Ringel S A, Rajan S 2020 J. Appl. Phys. 127 215706Google Scholar

    [13]

    Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502Google Scholar

    [14]

    Sun H D, Torres Castanedo C G, Liu K K, Li K H, Guo W Z, Lin R H, Liu X W, Li J T, Li X H 2017 Appl. Phys. Lett. 111 162105Google Scholar

    [15]

    Ho S T 2020 M. S. Dessertation (New York: Cornell University)

    [16]

    Yan P R, Zhang Z, Xu Y, Chen H, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Zhang C F, Hao Y 2022 Vacuum 204 111381Google Scholar

    [17]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2021 Int. J. Numer. Model. El. 34 e2794Google Scholar

    [18]

    Song K, Zhang H C, Fu H Q, Yang C, Singh R, Zhao Y J, Sun H D, Long S B 2020 J. Phys. D Appl. Phys. 53 345107Google Scholar

    [19]

    Jiao W Y, Kong W, Li J C, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103Google Scholar

    [20]

    Yu C, Debdeep J 2007 Appl. Phys. Lett. 90 182112Google Scholar

    [21]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2020 J. Semicond. 41 102802Google Scholar

    [22]

    Gordon L, Miao M-S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501Google Scholar

    [23]

    Goyal N, Iniguez B, Fjeldly T A 2013 AIP Conf. Proc. 1566 393Google Scholar

    [24]

    Goyal N, Fjeldly T A 2016 IEEE T. Electron Dev. 63 881Google Scholar

    [25]

    陈谦, 李群, 杨莺 2019 物理学报 68 017301Google Scholar

    Chen Q, Li Q, Yang Y 2019 Acta Phys. Sin. 68 017301Google Scholar

    [26]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [27]

    李群, 陈谦, 种景 2018 物理学报 67 027303Google Scholar

    Li Q, Chen Q, Chong J 2018 Acta Phys. Sin. 67 027303Google Scholar

    [28]

    张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202Google Scholar

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 Acta Phys. Sin. 62 150202Google Scholar

    [29]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755Google Scholar

    [30]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001Google Scholar

    [31]

    Li Q, Zhang J W, Chong J, Hou X 2013 Appl. Phys. Express 6 121102Google Scholar

    [32]

    Kawamura T, Das Sarma S 1992 Phys. Rev., B: Condens. Matter. 45 3612Google Scholar

    [33]

    Goodnick S M, Ferry D K, Wilmsen C W 1985 Phys. Rev. B 32 8171Google Scholar

    [34]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 45316Google Scholar

    [35]

    Ishibashi A, Takeishi H, Mannoh M, Yabuuchi Y, Ban Y 1996 J. Electron. Mater. 25 799Google Scholar

    [36]

    Li J M, Wu J J, Han X X, Lu Y W, Liu X L, Zhu Q S, Wang Z G 2005 Semicond. Sci. Technol. 20 1207Google Scholar

    [37]

    Anderson D, Zakhleniuk N, Babiker M, Ridley B, Bennett C 2001 Phys. Rev. B 63 245313Google Scholar

    [38]

    Parisini, Antonella, Fornari, Roberto 2016 Semicond. Sci. Technol. 31 35023.1Google Scholar

    [39]

    Zhi G, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T 2015 Appl. Phys. Lett. 106 591

    [40]

    Varley J B, Weber J R, Janotti A, Van d W, C. G. 2010 Appl. Phys. Lett. 108 142106Google Scholar

    [41]

    Passlack M, Hunt N, Schubert E F, Zydzik G J, Hong M, Mannaerts J P, Opila R L, Fischer R J 1994 Appl. Phys. Lett. 64 2715Google Scholar

    [42]

    Passlack M, Hong M, Schubert E F, Kwo J R, Mannaerts J P, Chu S, Moriya N, Thiel F A 1995 Appl. Phys. Lett. 66 625Google Scholar

    [43]

    Rebien M, Henrion W, Hong M, Mannaerts J P, Fleischer M 2002 Appl. Phys. Lett. 81 250Google Scholar

    [44]

    Rode D L 1970 Phys. Rev. B 2 1012Google Scholar

    [45]

    Liu B, Gu M, Liu X 2007 Appl. Phys. Lett. 91 172102Google Scholar

    [46]

    Fischer A, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2712Google Scholar

    [47]

    Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J, Graul J 2001 J. Electron. Mater. 30 L17Google Scholar

  • [1] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] Zhang Xue-Bing, Liu Nai-Zhang, Yao Ruo-He. Polar optical phonon scattering of two-dimensional electron gas in AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [3] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [4] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [5] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [6] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [7] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [8] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [9] Hu Fei, Duan Ling, Ding Jian-Wen. Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [10] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [11] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [12] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [13] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [14] Shang Li-Yan, Lin Tie, Zhou Wen-Zheng, Huang Zhi-Ming, Li Dong-Lin, Gao Hong-Ling, Cui Li-Jie, Zeng Yi-Ping, Guo Shao-Ling, Chu Jun-Hao. Electron transport properties of In0.53Ga0.47As/In0.52Al0.48As quantum wells with two occupied subbands. Acta Physica Sinica, 2008, 57(4): 2481-2485. doi: 10.7498/aps.57.2481
    [15] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [16] Zhou Wen-Zheng, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Cui Li-Jie, Li Dong-Lin, Gao Hong-Ling, Zeng Yi-Ping, Guo Shao-Ling, Gui Yong-Sheng, Chu Jun-Hao. Weak anti-localization in InAlAs/InGaAs/InAlAs high mobility two-dimensional electron gas systems. Acta Physica Sinica, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [17] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [18] Zhou Wen-Zheng, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Zhu Bo, Cui Li-Jie, Gao Hong-Ling, Li Dong-Lin, Guo Shao-Ling, Gui Yong-Sheng, Chu Jun-Hao. Observations on subband electron properties in In0.65Ga0.35As/In0.52Al0.48As MM-HEMT with Si δ-doped on the barriers. Acta Physica Sinica, 2007, 56(7): 4143-4147. doi: 10.7498/aps.56.4143
    [19] Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [20] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
Metrics
  • Abstract views:  2746
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2022
  • Accepted Date:  28 September 2022
  • Available Online:  19 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回