Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergy-based plasmon-induced transparency and optical switch with slow light applications

HU ShuNan LI DeQiong ZHAN Jie GAO EnDuo WANG Qi LIU NanLiu NIE GuoZheng

Citation:

Synergy-based plasmon-induced transparency and optical switch with slow light applications

HU ShuNan, LI DeQiong, ZHAN Jie, GAO EnDuo, WANG Qi, LIU NanLiu, NIE GuoZheng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Surface plasmons (SPs) is generated by the interaction of conduction electrons on the surface of a metallic medium with photons in light waves, and it has an important phenomenon called plasmon-induced transparency (PIT).The PIT effect is crucial for enhancing the performance of nano-optical devices by strengthening the interaction between light and matter, thereby improving coupling efficiency. However, traditional PIT has been realized in two main ways: either through destructive interference between bright and dark modes, or through weak coupling between two bright modes. Therefore, it is crucial to find a new excitation method to break away from these conventional approaches. In this paper, we propose a hypersurface composed of transverse graphene strips and longitudinal graphene bands, which can generate two single-PITs through the interaction between graphene. We then leverage the synergistic effect between these two single-PITs to realize a triple-PIT. This approach breaks away from the traditional method of generating PIT through the coupling of bright and dark modes. The results of numerical simulations are also obtained using the Finite-difference time-domain(FDTD), which are highly consistent with the results of the coupled-mode theory(CMT), thereby validating the accuracy of the results. In addition, by adjusting the Fermi level and carrier mobility of graphene, the dynamic transition from a five-frequency asynchronous optical switch to a six-frequency asynchronous optical switch has been successfully achieved. The six-frequency asynchronous optical switch demonstrates exceptional performance: at frequency points of 3.77 THz and 6.41 THz, the modulation depth and insertion loss reach 99.31% and 0.12 dB, respectively, while at the frequency point of 4.58 THz, the dephasing time and extinction ratio are 3.16 ps and 21.53 dB, respectively. Additionally, when the tuning range is focused on the 2.8 THz to 3.1 THz band, the triple-PIT system exhibits a remarkably high group index of up to 1212. These performance metrics surpass those of most traditional slow-light devices. Based on these results, the structure is expected to offer new theoretical insights for the design of high-performance devices, such as optical switches and slow-light devices.
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824.

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44.

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595.

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692.

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83.

    [6]

    Gao E D, Xu H X, Cao G T, Deng Y, Zhou M F, Li H J, Lu G B 2024 Chin. J. Phys.

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884.

    [8]

    Fan X B, Wang G P 2006 Opt. lett. 2006 31 1322.

    [9]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762.

    [10]

    Li Z L, Nie G Z, Wang J H, Fang Z,Zhan S P 2024 Phys. Rev. Appl. 21 034039.

    [11]

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701 (in Chinese) [向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023物理学报 72 128701]

    [12]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165.

    [13]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239.

    [14]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885.

    [15]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227.

    [16]

    Vakil A, Engheta N 2011 Science 332 1291.

    [17]

    Jablan M., Buljan H., Soljacic M 2009 Phys. Rev. 80 245435.

    [18]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138.

    [19]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431.

    [20]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749.

    [21]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394.

    [22]

    Lu H, Liu X M, Mao D 2012 Phys. Rev., A 85 53803.

    [23]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470.

    [24]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584.

    [25]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593.

    [26]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800.

    [27]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531.

    [28]

    Zhu J, Xiong J Y 2023 Measurement 220 113302.

    [29]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512.

    [30]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501.

    [31]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J,Wen K H, Qin Y W 2022 J. Phys. D. 55 445101.

    [32]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820.

    [33]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D. 55 155101.

    [34]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083.

    [35]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598.

    [36]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D. 52 405203.

    [37]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040.

    [38]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Phys. E. 134 114850.

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798.

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 Acs. Appl. Mater. 6 7014.

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200.

    [42]

    Li X S, Cai W W, An J, Kim S, Nah j, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312.

    [43]

    Yin Y, Alivisatos A P. 2005 Nature 437 664.

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776.

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J.Am.Chem.Soc. 129 10937.

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618.

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B. 56 281.

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667.

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103.

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330.

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936.

    [53]

    Sun Z P, Martinez A, Wang F. 2016 Nat. Photonics 10 227.

    [54]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351.

    [55]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710.

    [56]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B Condens. Matter. 80 195415.

    [57]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030.

    [58]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771.

    [59]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387.

    [60]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501.

    [61]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K,Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575.

    [62]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102.

    [63]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 Josa. A. 40 1545

    [64]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401.

    [65]

    Boyd R W, Shi Z 2015 Photonics Sci. Found. Technol. Appl. 1 363.

  • [1] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.72.20230663
    [2] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, doi: 10.7498/aps.71.20221365
    [3] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, doi: 10.7498/aps.71.20211397
    [4] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, doi: 10.7498/aps.71.20221397
    [5] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, doi: 10.7498/aps.70.20211397
    [6] Tu Xin, Chen Zhen-Min, Fu Hong-Yan. Reivew of silicon photonic switches. Acta Physica Sinica, doi: 10.7498/aps.68.20190011
    [7] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, doi: 10.7498/aps.68.20191068
    [8] Yang You-Lei, Hu Ye-Min, Xiang Nong. Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave. Acta Physica Sinica, doi: 10.7498/aps.66.245202
    [9] He Yu-Juan, Zhang Xiao-Wen, Liu Yuan. Total dose dependence of hot carrier injection effect in the n-channel metal oxide semiconductor devices. Acta Physica Sinica, doi: 10.7498/aps.65.246101
    [10] Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao. A nano-silicon-photonic switch driven by an optical gradient force. Acta Physica Sinica, doi: 10.7498/aps.64.154209
    [11] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, doi: 10.7498/aps.63.174202
    [12] Qi Xin-Yuan, Cao Zheng, Bai Jin-Tao. The beam propagation based on one-dimensional separation modulated photonic lattices. Acta Physica Sinica, doi: 10.7498/aps.62.064217
    [13] Wu Fang-Fang, Shen Yi-Feng, Wang Yong-Chun, Han Kui, Zhou Jie, Zhang Yuan, Chen Qiong. A compact and tunable photonic crystal switch based on defect resonance. Acta Physica Sinica, doi: 10.7498/aps.60.017801
    [14] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, doi: 10.7498/aps.59.3992
    [15] Xu Da-Wei, Liang Zhong-Zhu, Liang Jing-Qiu, Li Wei, Li Xiao-Qi, Sun Zhi-Dan, Wang Wei-Biao. Simulation and fabrication of flexible cantilever electromagnet actuated optical switch. Acta Physica Sinica, doi: 10.7498/aps.59.2479
    [16] Qin Xiao-Juan, Shao Yi-Quan, Guo Qi. Steering of optical beams in strongly nonlocal nonlinear media by spatial phase modulation. Acta Physica Sinica, doi: 10.7498/aps.56.5269
    [17] Miao Qing-Yuan, Huang De-Xiu, Zhang Xin-Liang, Yu Yong-Lin, Hong Wei. Theoretical study of wavelength conversion based on integrated twin-guide semiconductor optical amplifier optical switch. Acta Physica Sinica, doi: 10.7498/aps.56.902
    [18] Li Shi-Chen, Xue Ting, Yu Jian. . Acta Physica Sinica, doi: 10.7498/aps.51.2018
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, doi: 10.7498/aps.51.1521
    [20] YU ZHONG-YUAN, ZHANG XIAO-GUANG, LIU XIU-MIN. SHORT OPTICAL PULSE SWITCHING IN THREE-CORE NONLINEAR FIBER COUPLERS. Acta Physica Sinica, doi: 10.7498/aps.50.904
Metrics
  • Abstract views:  75
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Available Online:  25 February 2025

/

返回文章
返回